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Preface

In the Fall of 1997, under pressure of the looming deadline of EuroGP 1998, the First
European Workshop on Genetic Programming held in Paris, France,1 Grammatical
Evolution started its move from a back-of-a-napkin design to an actual working
prototype. We knew we had something special—an evolutionary algorithm that was
so general purpose that one could use a grammar to describe phenotypes and yet still
use the simplest possible representation underneath it all, a binary genetic algorithm.

The GA would keep it simple and fast, and the use of grammars would let us
tackle all sorts of interesting, complex problems, even those with multiple types
and massive amounts of constraints. It would even let us, as we claimed with some
bravado in 2001,2

. . . use the weapons of the enemy against them.

meaning that we could use the grammars to encode all sorts of delicious domain-
specific knowledge that would let us address problems, the complexity of which we
had previously only dreamed.

Conor was less than a year in his first faculty position, Mike and JJ were fersh-
faced young postgrads, all of us hungry for publications, and we figured GE would
be good to us. It would give us at least half a dozen, we figured, and probably even
a couple of journal publications before we moved onto the next big thing.

It was good to us. GE quickly became known in the field and our presentations
were well attended; people liked what we were doing. Then something surprising
happened: other GE publications that we weren’t involved with started to appear.
First, it was GE publications by authors we knew, applying GE to problems they
were already familiar with, but soon after—Chap. 1 in this book describes some of
these—papers with no connections to us began to appear. People were using GE

1EuroGP rapidly transformed itself into a full conference, co-located with other workshops and
conferences on Evolutionary and Natural Computation.
2This was in the introduction to the 2003 book on Grammatical Evolution by Michael O’Neill and
Conor Ryan.
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in extremely creative and interesting ways on problems that we would either never
have thought to address or didn’t have enough background in to make a significant
contribution to either GE or the problem. It was a very gratifying experience: our
tool was so good that other people wanted to use it.

With the help of sponsorship from the Science Foundation of Ireland, we
produced some bulletproof and easy-to-understand GE code and released it Open
Source; we figured this might get even more people using it.

More people were using it, but not just for applications; people were trying to
make it better. Fairly soon after the first application papers were published, papers
began to appear that suggested extensions, or pointed out that by modifying certain
parts, it could be improved; shortly after, different versions of GE appeared. Things
went from us and a close cadre of colleagues promoting and designing our GE
system to a true community effort, a living, breathing system that hundreds of people
were working with and adapting.

Coming up on the 20th anniversary of GE, there are now thousands of GE papers,
20 different GE systems running in all sorts of environments. It has been used for
everything from automatic program generation to financial trading to 3D design.
In this volume, we are delighted to bring together some exciting examples of both
research and applications, which have taken place over the past twenty years.

We debated what a state-of-the-art GE system would look like and eventually
settled on the minimal system in Chap. 1. The magic in the genotype-to-phenotype
mapping can be harnessed in all sorts of ways; if you are an experienced GE
practitioner with your own system, keep doing what you’re doing, but take a look
at the other chapters; we’ve been doing this for twenty years and are still amazed at
what people are producing. If you are a novice or a newcomer, read the first chapter
for a flavour and then choose which chapters resonate most with your application,
but read them all! Part of why GE has been so well embraced is that every part of
it is configurable or open to redesign, and each of us has experienced the thrill of
reading a paper about X only to take away some wonderful tips on Y .

The book is divided into two sections: analysis, which contains chapters looking
at how best to configure GE, be it specifically looking at grammars, mapping, or
semantics, among other issues, and applications, which contain a truly dizzying
array of problems tackled with GE. Better equipped than ever to combat our enemy,
we fully expect to be back for the 50th anniversary of GE, with an even more
incredible line-up!

Limerick, Ireland Conor Ryan
Dublin, Ireland Michael O’Neill
Limerick, Ireland JJ Collins
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Introduction to 20 Years of Grammatical
Evolution

Conor Ryan, Michael O’Neill, and JJ Collins

Abstract Grammatical Evolution (GE) is a Evolutionary Algorithm (EA) that
takes inspiration from the biological evolutionary process to search for solutions to
problems. This chapter gives a brief introduction to EAs, paying particular attention
to those involved in automatic program generation. We then describe grammars, the
core building blocks of programs, before detailing how GE’s usage of them is one
of the key differentiators between it and other EAs.

We give a brief overview of GE and its use, before looking at some of the key
developments in the past 20 years, along with a detailed look at the chapters in this
book.

1 Evolutionary Computation

Evolutionary Computation (EC) is a machine learning technique inspired by the
manner in which the biological evolutionary process operates. Populations of
individuals, that is, candidate solutions, are evaluated and their performance on
a particular problem scored. The population is replaced with a new one created
by probabilistically recombining the best performing individuals. In this way, the
population slowly evolves towards an optimal or near optimal solution.

Two key factors that limit the sort of problems that can be tackled by EC and,
indeed, any iterated machine learning technique, are representation and fitness.
Representation is concerned with the complexity of the solutions that the system
can evolve and manipulate. As individuals become more complex, it becomes
increasingly more difficult to recombine them with each other.

C. Ryan (�) · JJ Collins
Department of Computer Science and Information Systems, University of Limerick, Castletroy,
Limerick, Ireland
e-mail: conor.ryan@ul.ie; j.j.collins@ul.ie

M. O’Neill
School of Business, University College Dublin, Dublin, Ireland
e-mail: m.oneill@ucd.ie

© Springer International Publishing AG, part of Springer Nature 2018
C. Ryan et al. (eds.), Handbook of Grammatical Evolution,
https://doi.org/10.1007/978-3-319-78717-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78717-6_1&domain=pdf
mailto:conor.ryan@ul.ie
mailto:j.j.collins@ul.ie
mailto:m.oneill@ucd.ie
https://doi.org/10.1007/978-3-319-78717-6_1


2 C. Ryan et al.

Fitness is the ability to measure the quality of an individual, specifically its ability
to solve the problem at hand. If no fitness evaluator exists, creating one can be
prohibitively expensive, as unless they are quick and accurate, they will quickly
become a bottleneck.

EC has been used with considerable success in areas as varied as Bioinformat-
ics [15, 51], Automatic Circuit Generation [42, 94] and Fluid Dynamics [4]—as far
back as the seventies!

Evolutionary Automatic Programming is specifically focused on evolving pro-
grams, and more recently has been referred to as the problem of program synthesis.
The most commonly used approach, Genetic Programming (GP) [41–45] uses
expression trees to represent individuals, as in Fig. 1.

These individuals are recombined with each other using crossover, an operation
that swaps subtrees from the two parent individuals. The subtrees are selected at
random and placed into the corresponding location in the other parent, resulting in
two offspring as in Fig. 2.

GP has enjoyed much success and has been successfully applied to an enormous
number of problem domains. There is, however, no simple way to deal with multiple
types in GP, nor to handle constraints for the manner in which programs are put
together. This is because all GP individuals must obey the closure rule, that is, all
functions must take and return the same type. It is possible to use Strongly Typed
Genetic Programming [50], in which multiple types can be maintained, but this

Fig. 1 GP individuals represented as syntax trees. The individual on the left corresponds to (+ (*
3 Y) (* (/ 6 X) (* X Y))) while the one on the right corresponds to (+ (/ X Y) (* (* X 4) (Sin X)))

Fig. 2 The resulting offspring from crossing over the parents from Fig. 1
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involves performing constrained crossover, with only those nodes of the same type
being able to be swapped, which reduces the searching abilities of the system.

However, this constrains the search space, and becomes particularly problematic
when dealing with dimensionally aware [37, 38] problems. Furthermore, it also
doesn’t facilitate the passing of information down through the trees as in Attribute
Grammars (AG), which is necessary to generate dynamic types such as those
required in matrix multiplication.

Most users do not use GP with multiple types, however, and standard GP has
achieved extraordinary success across a very wide range of domains.

2 Grammatical Evolution

2.1 Grammars and Evolutionary Computation

All evolutionary systems that produce programs use grammars of one form or
another whether explicitly [49] or implicitly [87]. Grammars describe how programs
can be constructed from constituent parts, i.e. how variables and operators can be
legally combined to create executable code. The sorts of languages that different
kinds of grammars can produce is documented in Chomsky’s well known Hierarchy
of Grammars [7–9]. Most EC systems use Context Free Grammars (CFG), Type-2
grammars.

As noted above, most Evolutionary Automatic Programming (EAP) systems,
including GP, generally considered to be one of the more advanced ones, exclusively
use Closed Grammars [72, 73], which are a special, restricted form of CFGs that
have a single type.

Sometimes these are implicit, as with GP and Gene Expression Program-
ming [23], while other systems are more explicit, such as GE, G3P [95–98], etc.
The main trade-off between implicit and explicit grammar usage is speed and
expressiveness. We refer the interested reader to two relatively recent syntheses
of grammars and genetic programming [49], and more broadly in the context of
developmental systems [5].

GE, on the other hand, employs simple linear strings (typically binary or integer)
as genotypes, using a mapping scheme to map them onto arbitrarily complex
structures. The mapping scheme takes the form of a CFG, which specifies legal
relationships between terminals (items which can appear in the final structure) and
non-terminals (interim values to help link terminals together). CFGs enable one to
evolve considerably more complex structures than standard GP, because they permit
multiple types.

GE has a modular nature, see Fig. 3, meaning that everything from the problem
being tackled to the language being used and even the search algorithm being
employed can easily be swapped out. Section 4 describes how this modular nature
has lead to a massive community effort in further developing GE.
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Fig. 3 The modular nature of Grammatical Evolution. Everything from the fitness function to the
grammar and even the search engine can be modified or replaced

3 Crash Course in Grammatical Evolution

GE traditionally uses an evolutionary algorithm comprising a variable-length
linear genome encoding of a computer program. The genotype-phenotype mapping
(mapping) takes as input the linear genome and a grammar, and outputs a sentence in
the language described by the grammar, with context-free grammars being the most
often used. To drive search the quality of the each individual (that is, a sentence
from the language) needs to be assigned a measure of quality.

GE individuals are usually executable entities, but can be any structure rep-
resented by a grammar; for example, Chapter 13, “Design, Architecture, and
Engineering with Grammatical Evolution” in this book describes the GENR8 [30]
system that uses GE and Autodesk’s Maya CAD tool to evolve digital surfaces.

When the sentence is in the form of code, it is usually embedded in some wrapper
code to manage its execution. The result of the execution of the code is used as its
measure of fitness.

We illustrate the mapping process using a simple example grammar to generate
strings of characters, vowels and consonants. We first specify the grammar of the
output language, which describes all possible sentences that can be generated.

The sentences generated by the example grammar below are of type string,
which are comprised of one or more letter’s. A letter is allowed to be one of
our primitives, that is, either a vowel, consonant or character.

A convenient formal notation for grammars, often employed by GE, is Backus
Naur Form (BNF). BNF is comprised of the tuple {N, T, P, S}, where N is the set of
intermediary symbols called non-terminals, which are mapped to the set of terminal
symbols (T) according to P, the set of production rules. The terminal set consists of
items that can actually appear in legal sentences for the grammar. The final item, S,
is a special non-terminal start symbol, from which all derivation sequences begin.
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For example, in this particular grammar the terminals are neatly described by
three types: vowel, consonant and other character. We use the following
sets for N and P .
N = {<string>, <letter>, <vowel>, <consonant>, <character>}, and
T = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, ", ?, ’,’, ., ;, :, ’ ’}.

That is, the terminal set consists of letters, spaces and punctuation symbols, while
the non-terminal set consists of the three types noted above, along with string,
the start symbol, and letter. letter is a non-terminal that will be used to help
group various vowels, consonants and characters together. The production rules for
this grammar can be specified as follows:

<string> ::= <letter>|<letter><string>
<letter> ::= <vowel>|<consonant>|<character>

<vowel> ::= a|e|i|o|u
<consonant> ::= b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z
<character> ::= "|*|?|Ă|@|,|.|;|:|’ ’

Thus, the above grammar contains the set of all possible primitive symbols of
the sentences, and the structural rules, which govern the generation of syntactically
legal sentences. For example, the following is an example of a sentence generated
by this grammar, with a partial derivation tree shown overleaf in Fig. 4:

to evolve or not to evolve, that is the question.

3.1 Mapping

GE individuals describe a derivation sequence through a grammar. They do so by
selecting choices from the production rules at every derivation step, for example,
whether to choose a vowel, consonant or letter from letter.

The linear genome is interpreted as 8 bit codons, i.e. the smallest functional unit
in GE. Each time a choice needs to be made in the derivation sequence a codon is
taken and the mod of the number of available rules calculated, which is then used to
select the appropriate rule. If, for example, we were choosing a production rule for
letter we would mod the codon by 3 because there are three production rules.

The process continues as described in Fig. 5, consuming a codon for each choice
in the derivation sequence, until the full derivation tree has been produced. If there
are unconsumed codons remaining, these are said to be the tail of an individual
and do not contribute to the mapping. In the event that the individual has not fully
mapped and all the codons are consumed, either the individual is simply abandoned
and assigned the lowest possible fitness or is wrapped, meaning that the first codon is
reused. In these cases, an upper limit is placed on the number of times an individual
can be wrapped.

Although this can lead to more successful mappings, particularly early in runs,
results have been mixed [89] and the ability for wrapping to help evolution is often
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<string>

<string><letter>

<string><letter>“

<string><letter>t

<string><letter>o

<string><letter>‘  ‘

<string><letter>e

<string><letter>v

<string><letter>o

<string><letter>l

<string><letter>e

Etc.

Fig. 4 Partial derivation of the sentence “to evolve or not to evolve, that is the question.” from the
example grammar

Fig. 5 GE generating a derivation and corresponding parse tree from a binary string. The numbers
indicate the order of the mapping was done; circled nodes labelled with letters indicate terminals
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dependent on the grammar being used. Many researchers have found that removing
wrapping doesn’t have a major detrimental effect.

3.2 Alternative Grammars

With the exceptions noted here, GE and, indeed, virtually all other grammar based
systems, predominantly use CFGs which, although expressive enough for GE to be
a very broadly applicable system [3, 24, 61, 71], is limited to regular and context
free languages.

Alternative grammars, which have been employed with GE include Attribute
Grammars (more details below in Sect. 3.2.1), Shape Grammars [77], L-
Systems [66] and Map L-Systems [83], logic grammars [39], graph grammars [47],
meta-grammars (albeit CFG) [63, 70] and Tree Adjoining Grammars [54, 56, 58].

3.2.1 Attribute Grammars

Attribute Grammars (AG) can be used to expand the expressive power of GE
by attaching attributes (pieces of information) to the symbols in a grammar [10,
11, 35, 36, 75, 84]. These entities can interpret and generate attributes; attributes
are generated either passed down (inherited) or passed up (synthesized), although
default attributes can also be created and passed around as in Fig. 6. Attributes
can take any form, from simple atomic forms to arrays or lists. These attributes
can be used by a developing structure in AGE to pass information about various
parts of the structure to other parts. AG facilitates the manipulation and exploitation
of contextual information, which can be about other parts of the solution or the
problem. For example, in the context circuit design, attributes could be used to pass
information about which input pins have already been processed.

A B C D E F G H I J 1

2

3 4

Rest of
Derivation Tree

(nodes 5+)

1 2 3 4 5 61 2 3 4

Codons

Codon usage

Node Codons Effect

1 2 Production + Default Attribute

2 1 Production

3 1 Production

4 2 Production + Default Attribute

Codon Effects

Inherited attributes Synthesized attributes Default attributes

Fig. 6 The GE mapping process augmented with AG. Individuals are mapped from simple binary
strings (codons) to high level structures using arbitrarily complex grammars, including attribute
grammars, which can pass contextual information around
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4 Twenty Years of Grammatical Evolution

As shown in Fig. 3, the genotype-phenotype mapping of GE provides the advantage
of a modular framework to approach Genetic Programming. The main components
of this framework are the search engine, the mapper, the grammar, and the fitness
evaluation. Activities over the past 20 years can be described in terms of these
components, see Fig. 7 for an overview.

Research in the search engine revolves around understanding the impact of
the genome encoding [34], initialisation [59, 86], modularity [29, 33, 82, 90–
93], crossover [27, 48, 69, 72], the impact of dynamic environments [13, 79], the
behaviour of search operators of crossover and mutation, proposing alternative
search operators [6, 17, 25, 28, 52, 62, 76] to replacing the traditional evolutionary
algorithm with alternatives such as Particle Swarm Optimisation [65, 74], Simulated
Annealing [85], Differential Evolution [64] and even random search [85]. Continu-
ing this vein of research Chapter 7, “Geometric Semantic Grammatical Evolution”
outlines a geometric semantic search operator approach to GE, and in Chapter 3,
“On the Non-uniform Redundancy of Representations for Grammatical Evolution:
The Influence of Grammars” we see an emphasis on analysing the locality of the
GE mapping and some of its genetic search operators.

The mapping process itself has been a target for investigation with a number
of alternatives having been proposed in part to gain a deeper understanding of
the generative process and in attempts to make improvements by, for example,
complexifying the mapping by bringing it closer to its biological counterpart
[1, 16, 40]. Chapter 4, “Mapping in Grammatical Evolution” provides an overview
and highlights key studies in this area.

At the heart of GE is the grammar and while the majority of papers adopt CFGs,
we noted earlier in this chapter (Sect. 3.2) the variety of grammars which have been
adopted with a GE mapping is impressive, including shape, logic, attribute, meta,
graph and tree adjunct grammars to prefix, infix and postfix encoding [31]. This
line of research continues to this day, and Chapter 2, “Understanding Grammatical
Evolution: Grammar Design” provides a critical analysis on the importance of
grammar design in the successful application of GE.

Part of the attraction of genetic programming algorithms such as GE are their
flexibility of application. As such, GE has enjoyed application to a wide set of
problems areas. Part II of this book contains a selection of chapters highlighting
some of these including Financial Modelling (Chapter 11, “Grammatical Evolution
in Finance and Economics: A Survey”), Medicine and Bioinformatics (Chapter 15,
“Identification of Models for Glucose Blood Values in Diabetics by Grammatical
Evolution” and Chapter 16, “Grammatical Evolution Strategies for Bioinformat-
ics and Systems Genomics”), Architecture and Design (Chapter 13, “Design,
Architecture, and Engineering with Grammatical Evolution”), Business Analytics
(Chapter 19, “Business Analytics and Grammatical Evolution for the Prediction
of Patient Recruitment in Multicentre Clinical Trials”), Computational Creativ-
ity (Chapter 14, “Grammatical Evolution and Creativity”) and Game Artificial
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Intelligence (Chapter 18, “Evolving Behaviour Tree structures using Grammati-
cal Evolution”). Other examples include communication networks [19, 20, 32],
search-based software engineering [12] and program synthesis [67, 68, 80], sport
analytics [81], eco-system modelling [14, 60], and animation [53, 55, 57].

Matlab1 and more recently in Python with PonyGE2 [21, 22] with the majority
of these employing an integer genome encoding as standard.

Finally, as noted in Sect. 5.4, a large number of variants of GE have appeared.
These include position independent approaches such as Chorus and πGE [2, 16, 88],
context-sensitive approaches such as Adaptive Logic Programming [39], TAGE [56]
and DTAGE [58], to a novel 3D MAP L-system GENr8 [83], and exploiting meta-
grammars for Grammatical Evolution by Grammatical Evolution [70].

5 The State of the Art

As noted in the foreword, as the authors of the original GE paper, one of the
most rewarding things we have experienced is how it has been taken up by other
researchers. The state of the art in 1998 was easy to articulate; there were only three
researchers, three problem domains and one system. Twenty years of evolution have
had their impact on the sort of applications that GE can be applied to. It is important
to note that it isn’t possible to definitively state what set up is the best GE, mainly
because of the hugely broad spectrum of uses. Instead, we focus in this section on
the sorts of choices that need to be considered when tackling a problem with GE,
and discuss how various characteristics of problems influence these choices.

5.1 Grammars

AGs are more expressive than CFGs and can be used to enforce constraints and
pass context information around derivation trees, as in Fig. 6. The key advantage for
CFGs is their simplicity, and mappers using CFGs are generally faster than their AG
counterparts, but at the cost of sacrificing expressiveness. Several chapters in this
book look in detail at grammar design and our advice is to use the most powerful
grammar necessary, but no more.

1http://ncra.ucd.ie/Software.html.

http://ncra.ucd.ie/Software.html
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5.2 Genetic Operators

The genetic operators are generally inherited from whatever underlying GA or
search engine is driving GE, but early work analysing the operation of single point
crossover [72] showed that, when compared to other crossover operators, including
highly tuned homologous2 operators, actually performed surprisingly well, giving
a very good performance-to-cost ratio. More recent work, such as Chapter 7,
“Geometric Semantic Grammatical Evolution” in this book, has examined semantic
crossover operators, and show some very promising results.

For a simple GE, set up we recommend what has become known as effective
crossover, that is, to simply ensure that at least one crossover point is selected within
the coding part of an individual as described in Fig. 8. This is simple to implement
and dramatically increases the probability that at least one of the offspring will be
phenotypically different from the parents.

5.2.1 Initialisation

Originally, we used random initialisation for the GE population. However, as
noted in [18, 26, 86], random initialisation can lead to very heavily biased initial
populations. Consider the simple grammar below:
< S >::=< op >< v >< v > | < v >

< op >::= +| − | ∗ |/
< v >::= x|y

Fig. 8 The three distinct crossover regions for Grammatical Evolution. The solid area in each
parent represents the coding regions, while the diagonal lines represent regions that were not used
in the mapping. When each crossover point occurs within these regions, the operation will simply
result in two offspring identical to the parents. When the points are in either of the other two
regions, the crossover operation is said to be effective

2Crossover operators that attempt to swap functionally similar sections from parents.
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Fig. 9 Creating derivation trees in Sensible Initialisation. The production rule number at each
step is noted and will subsequently be used in the following “umod” step. Each individual has a
sequence of choices associated with it. In this case the sequence is 0210

Uniform random initialisation will create a population in which 50% of the
individuals consist of just one item, due to the < S >:==< v > production; of
these, approximately half will be x and the rest y. Clearly this compromises the
variation in the initial population, making evolution towards a useful product more
difficult than it needs to be.

Thus, it is important to ensure a spread of individuals in the first generation.
Sensible Initialisation [86] takes the ramped-half-and-half approach often used in
GP and uses it for GE. Sensible initialisation operates by creating a population of
derivation trees of various shapes and sizes and performing an “unmod” operation
on them to generate linear strings that can subsequently be processed by GE.

When creating each individual in the initial population, first a derivation tree
of a particular size is generated. Figure 9 gives an example of a derivation tree of
depth 3. The choice made at each step is noted, for example, the initial step used
the production rule < S >::=< op >< v >< v >, which is choice 0 from those
available for < S >. Similarly, when mapping < op >, choice 2 is made from the
available productions rules, that is, < op >::= ∗.

Each individual in the initial population has a list of these choices, which can
be used to quickly identify duplicates. Once we are satisfied that the population
consists of unique genotypes, the final “unmod” step can be performed.

Unmod produces the actual codons that will be used and essentially performs the
opposite operation to mod, returning a number that, when divided by the number of
choices available for the particular non-terminal, will return the choice made. In our
example, we wish to perform 2 unmod 0 for the first production rule, meaning that
we require a number that, when modded by 2 will yield 0.

This means that any even number between 0 and 255 will suffice. Similarly, in
the second production rule, we perform 4 unmod 2 as there are four choices and our
tree used the second one. Any number in the set {2, 6, 10..} will give the necessary
number.

Clearly, unmod is a stochastic operator and, while its output doesn’t impact
the initial generation in any way, it is crucial to introduce variation so that when
individuals from the first generation are crossed over with each other, codons that
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end up being used for different production rules than they originally were, will not
bias the choices made.

More recent work on initialisation includes that of Nicolau, who demonstrated
that across the problems examined in their study, a variant of Harper’s PTC2 consis-
tently outperforms other initialisations [59], as well as the work of Lourenco [46],
which is further advanced in Chapter 6, “Structured Grammatical Evolution: A
Dynamic Approach”.

What is crucial though, is to put some effort into ensuring good variation in that
initial population, and to avoid simple random initialisation.

5.3 Parameter Settings

As with all EAs, GE has a number of parameter settings, such as population size,
mutation rates and the like. There is a vast amount of literature in the field about
how to set these parameters, but suffice it to say that population size is the most
sensitive, and that more difficult problems generally require larger populations. It
is important to turn this knob carefully though, as grammars and initialisation also
play a part.

5.4 Variants

As described earlier in Sect. 4, not only has there been considerable research
into the use of GE and analysis into its operations, there have also been quite a
number of variants. It would take a whole other book to exhaustively test these
against each other on a broad enough range of problems to be able to make any
sort of recommendations, but readers are encouraged to investigate these variants,
particularly those that have been shown to outperform GE on problems related to
their own.

6 Contents of This Book

The book is divided into two key sections, Analysis and Applications. Rather
appropriately, we start in the applications section with two chapters on grammar
design. In Chapter 2, “Understanding Grammatical Evolution: Grammar Design”,
Nicolau and Agapitos present some domain-independent guidelines for designing
grammars, and, in Chapter 3, “On the Non-uniform Redundancy of Representations
for Grammatical Evolution: The Influence of Grammars”, Schweim, Thorhauer
and Rothlauf present a fascinating study on the impact of grammar design and
redundancy on the creation of biased trees.
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These are followed up by a trio of chapters on mapping in GE. Starting with
a comprehensive survey in Chapter 4, “Mapping in Grammatical Evolution” by
Fagan and Murphy, we then move to a contribution by Hemberg, Chapter 5,
“Theory of Disruption in GE” in which he formalizes and analyzes the mapping
process. This leads nicely into Chapter 6, “Structured Grammatical Evolution:
A Dynamic Approach” by Lourenco et al., in which they further develop their
Dynamic Structured Grammatical Evolution (DSGE) system, a version of GE that
employs a different mapping to improve the power of the genetic operators.

Similar motivations are evident in Chapter 7, “Geometric Semantic Grammatical
Evolution” and Chapter 8, “GE and Semantics”, by Moraglio et al. and Echeandia
et al., respectively, the former which develops a semantic crossover operator for GE
and the latter employs grammars to enable semantics, giving an excellent review of
related work as it does so.

This section of the book is rounded out by two final chapters. Chapter 10,
“Comparing Methods to Creating Constants in Grammatical Evolution” by Azad
and Ryan tackles the issue of constant generation, highlighting the pros and
cons of the more well-known methods, while Dufek et al. describe a parallel
implementation of GE in Chapter 9, “Multi- and Many-Threaded Heterogeneous
Parallel Grammatical Evolution”, which yields hugely impressive results.

We then switch gear to applications and provide seven radically different
problems that have been tackled by experts in the field. Starting with a survey of
financial applications in GE in Chapter 11, “Grammatical Evolution in Finance and
Economics: A Survey” by Brabazon, we move to parallel program generation in
Chapter 12, “Synthesis of Parallel Programs on Multi-Cores” by Chennupati et al.

The creative side of GE is explored in the next two chapters, starting with Fenton
et al. in Chapter 13, “Design, Architecture, and Engineering with Grammatical
Evolution”, who use GE to evolve physical designs, and then with Loughran in
Chapter 14, “Grammatical Evolution and Creativity” who, in a very philosophical
paper, uses GE to evolve music. There then follow two chapters from medical
domains; first Hidalgo et al. use GE to generate models for glucose blood values
in Diabetics in Chapter 15, “Identification of Models for Glucose Blood Values
in Diabetics by Grammatical Evolution”, while Moore and Sipper give a thorough
review of the use of GE in bioinformatics and systems genomics.

7 Summary

We hope this book provides useful snapshots of research and applications in
Grammatical Evolution which has taken place over the past 20 years since the
original work was published in EuroGP 2008, and presents some of the state of the
art and current thinking in this field. Grammatical Evolution as a form of Genetic
Programming in particular in its application to automatic programming or program
synthesis has still a lot of open issues to address [78] and we hope to witness and
be involved in the continued development of this exciting field of research for some
time to come.
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Understanding Grammatical Evolution:
Grammar Design

Miguel Nicolau and Alexandros Agapitos

Abstract A frequently overlooked consideration when using Grammatical Evo-
lution (GE) is grammar design. This is because there is an infinite number of
grammars that can specify the same syntax. There are, however, certain aspects
of grammar design that greatly affect the speed of convergence and quality of
solutions generated with GE. In this chapter, general guidelines for grammar design
are presented. These are domain-independent, and can be used when applying GE
to any problem. An extensive analysis of their effect and results across a large set of
experiments are reported.

1 Introduction

One of the attractive aspects of Grammatical Evolution (GE) is how it can be easily
applied to a multitude of problem domains: just design a grammar specifying the
syntax of potential solutions, and supply a fitness function to evaluate them.

Easily and just are large over-simplifications. While specifying the syntax of
solutions with a context-free grammar is a relatively simple task, depending on
the problem domain (a multitude of grammars exist in the literature for symbolic
regression applications, for example), there is an infinite number of grammars that
can specify the same syntax. But not all of them are adequate for use with GE.

In fact, the effectiveness of a grammar is deeply tied to GE’s mapping process,
and its effect on the search operators. In this study, this effect is analysed, and
general guidelines are provided, with the aim of improving GE’s search process.

There are many aspects to consider, when designing a grammar for use with
GE. Some of these include which and how many non-terminal symbols to use,
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recursiveness, mapping probabilities, symbol biases, length of derivation sequences,
prefix vs. infix vs. postfix notation, readability/understandability/maintenance of
grammars, and many more.

These topics are analysed in this chapter, in terms of initial search space sampling
(i.e. their combined effect with initialisation), search effectiveness (combined effect
with the search operators), and quality of final solutions (fitness and size of final
solutions). A large set of experiments are also executed, for empirical evidence. The
results obtained confirm and highlight just how much grammar design can affect the
performance of GE.

Based on these findings, a set of general grammar design guidelines are proposed
for GE with linear genome representations. Although the resulting grammars can
be substantially larger and more complex, most of these transformations can be
automatically applied to well-designed base grammars.

2 Previous Work

Although a large volume of work exists in the literature on grammar design,
particularly in linguistics and computer science, it almost exclusively relates to their
use in parsing applications, i.e. syntax verification, compiler design, text mining, etc.
In GE, on the contrary, grammars are used in a constructive manner, which, when
combined with linear numerical sequences (genotypes) to determine derivation
sequences, creates a mostly unique role for grammars.

There is surprisingly little work in the literature on the design of grammars for
GE. This is probably due to the remarkable resilient nature of the evolutionary
search process: given a correct and reasonably designed grammar, GE tends to
produce a working solution. This is not always ideal, however, both in terms of
the search effort required, and also the quality of the final solutions produced.

One of the earliest studies of the influence of grammar design on the performance
of GE [22] looked specifically at reducing the number of non-terminal symbols in
grammars, and proposed an automatic process of achieving this. This resulted in a
small increase in performance across all problems attempted.

Hemberg et al. [11] studied the design of grammars using prefix, infix and postfix
notation, and their relative performance on a series of symbolic regression problems.
The most relevant conclusion is indeed that “the choice of grammar can produce
performance advantage”.

One of the most comprehensive analysis of the influence of grammar design in
the performance of GE is found in Hemberg’s doctoral thesis [10]. By allowing the
grammar to evolve at the same time as the linear genome structures, knowledge is
uncovered about the influence of different grammars on the performance of GE.
Not surprisingly, it was again concluded that the choice of grammar can influence
the performance of GE, for the problems examined.

Byrne et al. [1] analysed two types of mutation events in GE, structural or nodal
in nature, and showed how these can be related to exploration and exploitation,
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respectively. These mutation events are directly dependent on the design of the
grammars used.

Harper [9] highlighted the problem of having more production rules adding non-
terminal symbols to the mapping sequence than removing them, and the negative
impact of this on the performance of GE, if using linear genomes. Nicolau et al.
[26] also analysed the effect of grammar design, focusing on the issue of mapping
termination. Both studies highlighted the importance of good grammar design.

Grammar design, and its corresponding effect in representational bias, can also
greatly influence the size of the resulting solutions. In Genetic Programming (GP),
a possible outcome of this is bloat, i.e. a substantial growth in solution size, with
negligible effect in performance increase [20]. Although bloat in GE is not quite as
prevalent, studies have shown how grammar design directly influence the generation
of very small [25] or very large [9] solutions.

More recently, work has been made on the design of grammars for sorting
networks [6] and automatic program synthesis [7], although the results obtained
only apply to grammar-based genetic programming systems using derivation trees.

All these studies have a common theme, which is how grammar design in GE
can greatly affect its performance. The following section takes this into account,
and presents a series of grammar design guidelines, or transformations for existing
grammars, aimed at improving the performance of GE in different levels.

3 Grammar Design

A series of grammar transformations are presented in this section. To illustrate their
application, Grammar 0 (G0) is used as a starting point. This is a typical grammar for
symbolic regression applications with GE, slightly simplified (no unary operators)
to illustrate the design techniques presented.

<s> ::= <e>
<e> ::= <e> <o> <e>

| ( <e> <o> <e> )
| <f> ( <e> , <e> )
| <v>

<o> ::= + | - | *
<f> ::= pdiv
<v> ::= x | 1.0

Grammar 0 Simple arithmetical expressions grammar. Division uses a protected implementation,
termed pdiv (more details in Sect. 5.3)
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3.1 Balanced Grammars

In order to generate variable-length, unbounded phenotype solutions for any
problem, GE makes use of two components:

– Variable-length genotype structures1;
– Recursively-defined grammar rules.

Both conditions are required, in order to generate phenotype solutions of any size.
If genotypes are unbounded but the grammar has no recursively defined symbols,
a phenotype solution is only as large as the largest sequence of terminal symbols
generated by the longest derivation path through the grammar (some studies [18] use
this as both a means to limit solution size, and also to ensure validity of mapping,
by always using genotype strings sufficiently long to terminate any derivation
sequence).

If on the other hand the grammar is recursive, but the genotype is a fixed-
length structure (of length l), the maximum phenotype solution length is the longest
derivation path through the grammar smaller or equal to l mapping steps (unless
wrapping is used).

The use of recursiveness in grammars with GE appears right from its first
publication [38], although some interesting GE applications make use of non-
recursive grammars, defining either fixed-length solutions (such as the design of
a genetic algorithm using GE [28]), or maximum-length bounded solutions (such as
the design of an ant-colony optimisation algorithm using GE [40]).

Recursiveness should be applied with care, however. Single levels of recursive-
ness are easy to implement and understand (see e.g. the second line of G0), but
multiple recursive symbols or multiple line recursiveness easily become hard to
design and/or understand. See for example the history of attempts at solving the
Santa Fe Ant Trail Problem [15] with GE, from the original incorrect grammar [29],
to a first [35] and then second [9] correction, and its analysis [26]. And yet, recent
publications [17, 18, 21, 42] still use incorrect grammars, not respecting the original
problem syntax.

The influence of grammar recursiveness in the ability to terminate mapping,
and thus in the effectiveness of GE, has been studied as early as 2003 [39], where
productions were categorised based on whether they added, maintained or reduced
the number of non-terminal symbols left to map, when applied.

A way to label productions as recursive or not was proposed by Ryan and Azad
[37], within the context of initialisation. Subsequently, Harper [9] labelled grammars
as explosive or balanced, depending on whether there is a higher probability of
adding non-terminal symbols during mapping over adding terminal symbols.

1Technically, genotypes used with GE are length-bounded, in the sense that they cannot be smaller
than zero, or larger than what the memory of the machine running the experiments can hold. This
maximum size is, however, a technical limitation, rather than a conceptual bound.
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<s> ::= <e>
<e> ::= <e> <o> <e> | <v>

| ( <e> <o> <e> ) | <v>
| <f> ( <e> , <e> ) | <v>

<o> ::= + | - | *
<f> ::= pdiv
<v> ::= x | 1.0

Grammar 1 Balanced recursion grammar

These analyses are all related. In this chapter, we define as explosive grammars
where at least one symbol has more recursive productions than non-recursive. An
example is grammar G0: the symbol <e> has three recursive productions associated,
and a single non-recursive production. This kind of grammar is explosive, and has
a low probability of generating a fully mapped phenotype string, when used in
conjunction with a randomly-generated genotype string.

For a grammar to be balanced, each recursive production should have a
corresponding “consuming” production. Grammar 1 (G1) achieves this, by having
a non-recursive production for every recursive production associated with <e>.

Note that this does not alter any biases, other than that of replacing <e> using a
recursive or non-recursive production. There is also a downside: G1 now has a 50%
probability of generating expressions consisting solely of either x or 1.0.

3.2 Unlinked Productions

When using GE with a linear genome, if the grammar has several non-terminal
symbols, the function of a codon (the production it will choose) is dependent on the
non-terminal symbol to be mapped, at a given stage of the mapping process. This
means that, when crossover occurs, the function of a codon might change.

The potential destructive nature of such changes is addressed in Sect. 3.3, by
reducing the number of non-terminal symbols. But if several non-terminal symbols
are needed, production rules associated with different symbols can be functionally
linked, in the sense that all codon values that choose a specific production for a
symbol, if used to make a choice for a different symbol, will always choose another
specific production.

Take grammar G1 as an example. Symbol <e> has six associated productions,
which is a multiple of both the number of productions associated with <o> (three)
and <v> (two). So if codon values transforming <e> into <e> <o> <e> are used
to choose a production for <o> or <v>, they will always transform them into + and
x, respectively. Table 1 illustrates this.

This can introduce biases in the exploration of the search space. As individuals
grow in size (only achievable in standard GE through the use of the crossover
operator), a larger proportion of even codon values are required at the start of the
genome (see Table 1), and a larger proportion of odd values towards the end (to
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Table 1 Functionally-linked productions of grammar G1: codon values transforming <e> into
<e> <o> <e> will always transform <o> into + and <v> into x; by contrast, <o> and <v> are
unlinked, as codon values transforming <o> into + can transform <v> into either x or 1.0

Codon values Parity <e> <o> <v>

0,6,12,. . . Even <e> <o> <e> + x

1,7,13,. . . Odd <v> - 1.0

2,8,14,. . . Even ( <e> <o> <e> ) * x

3,9,15,. . . Odd <v> + 1.0

4,10,16,. . . Even <f> ( <e> , <e> ) - x

5,11,17,. . . Odd <v> * 1.0

terminate the recursion of the <e> symbol). However, this will also result in a
higher proportion of symbol x at the start of the genome, and of 1.0 towards the
end. Only through later specific mutation events can suitable proportions of x and
1.0 be evolved, assuming the unbalanced solution will survive until then. In other
words, the structural function of the <e> symbol, and the nodal content function of
the <v> symbol are linked.

The link between <e> and <o> is less obvious, but biases also exist: a solution
requiring only the use of the +, - and * operators will be biased towards + and *,
when solutions grow in size (first and third productions associated with <e>).

Note that these biases can be either beneficial or detrimental, depending on the
problem domain. But for a black-box approach, with no domain knowledge, it is
desirable to explore the search space in the most unbiased way.

An example is the typical grammar used with GE for the Max problem [8].
Inconsistent results were obtained with different GE mapping orders [4], and further
analysis [5] produced no clear explanations for this issue; it was subsequently shown
[26] that the grammar used in those experiments suffered from functionally linked
productions.

The problem of linked productions was identified as early as 2002 [13]. The
solution proposed then was the adoption of a different mapping procedure, called the
Bucket Rule. However, it was later shown [26] that these biases can also be removed
without modifying the standard GE mapping process, through careful grammar
design.

Grammar 2 (G2) illustrates how to achieve this, through production rule repeti-
tion. In this case, six copies of each production associated with <o> are introduced
(for a total of 6 ∗ 3 = 18 productions), whereas 18 copies of each production
associated with <v> are used, for a total of 18 ∗ 2 = 36 productions. Note that
sufficiently large codon value ranges are required, when using this technique, to
ensure minimal production choice biases, but this is good GE practice anyway [31].
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<s> ::= <e>
<e> ::= <e> <o> <e> | <v>

| ( <e> <o> <e> ) | <v>
| <f> ( <e> , <e> ) | <v>

<o> ::= + | + | + | + | + | +
| - | - | - | - | - | -
| * | * | * | * | * | *

<f> ::= pdiv
<v> ::= x | x | x | x | x | x

| x | x | x | x | x | x
| x | x | x | x | x | x
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0

Grammar 2 Unlinked productions grammar

3.3 Reduced Non-terminals

The use of linear genomes and a one point crossover with GE leads to what has been
termed the ripple effect [32]. This means that, when viewed at a derivation tree level,
crossover removes several sub-trees from each parent, which are filled with genetic
material from the other parent. Given that the exchanged genetic material consists
of a numerical sequence, the actual phenotypic material received may or may
not correspond to the original phenotypic material from the other parent: codons
reinterpreted under different derivation tree nodes (i.e. non-terminal symbols) will
generate different, potentially never-seen before phenotypic material.

This change of interpretation of genetic material can be very damaging to the
already fragile locality of crossover in GE [36]. However, many grammars in the
literature define more non-terminal symbols than strictly required, creating further
cases of reinterpretation of exchanged genetic material.

A solution is thus to reduce the number of non-terminal symbols as much as
possible [22]. In fact, for symbolic regression (the most common application domain
of GP-like systems [43]), grammars with a single non-terminal symbol can be used
(effectively single-type languages, corresponding to GP’s closure requirement).

Grammar 3 (G3) shows a single non-terminal symbol version of G1 (using G1 or
G2 as a base is irrelevant, given that a single non-terminal symbol remains, <e>, so
no linked productions will occur). This process works by replacing non-recursively
defined non-terminal symbols by all of their productions, wherever they are used,
while keeping the biases of the original grammar. A more detailed description and
step by step illustration can be found in the relevant publication [22].
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<e> ::= <e> + <e> | <e> - <e> | <e> * <e>
| <e> + <e> | <e> - <e> | <e> * <e>
| x | x | x
| 1.0 | 1.0 | 1.0
| ( <e> + <e> ) | ( <e> - <e> ) | ( <e> * <e> )
| ( <e> + <e> ) | ( <e> - <e> ) | ( <e> * <e> )
| x | x | x
| 1.0 | 1.0 | 1.0
| pdiv ( <e> , <e> ) | pdiv ( <e> , <e> )
| pdiv ( <e> , <e> )
| pdiv ( <e> , <e> ) | pdiv ( <e> , <e> )
| pdiv ( <e> , <e> )
| x | x | x
| 1.0 | 1.0 | 1.0

Grammar 3 Single non-terminal grammar

<e> ::= ( <e> + <e> )
| <e> + <e>
| ( <e> - <e> )
| <e> - <e>
| ( <e> * <e> )
| <e> * <e>
| <e> pdiv <e>
| ( <e> pdiv <e> )
| x | x | x | x
| 1.0 | 1.0 | 1.0 | 1.0

Grammar 4 Corrected-biases grammar

3.4 Grammar Biases

Grammars such as G0 are common in the literature. However, it has a 66.666% bias
towards the use of one of the operators (+, -, *), resulting in a 22% bias for each,
and a 33.333% bias towards the use of pdiv, which may not be desired.

To ensure an unbiased exploration of the search space, all four operators should
have the same biases. This also makes the search space more comparable to that of
GP. Grammar 4 (G4) shows a transformation of G3 to take this into account.

3.5 Infix/Prefix Notation

From a mathematical point of view, using a single non-terminal symbol grammar,
a prefix or postfix notation will essentially produce the same performance (subject
to the stochastic nature of the search process), as they explore the same (inverted)
syntax space. However, infix will not, if used both with and without parenthesised
expressions. For example, a prefix expression *xx may become *x+xx, if the
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<e> ::= + <e> <e>
| - <e> <e>
| * <e> <e>
| pdiv <e> <e>
| x | x
| 1.0 | 1.0

Grammar 5 Prefix-notation grammar

<e> ::= + <e> <e>
| - <e> <e>
| * <e> <e>
| pdiv <e> <e>
| <v>
| <v>
| <v>
| <v>

<v> ::= x | x | x | x | x | x | x | x
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0

Grammar 6 Compromise transformations for a compact, understandable grammar. Note that
unlinking of productions associated with <e> and <v> was required

codon encoding the second argument is mutated; with infix notation, however, x*x
can become either x*(x+x), which is equivalent, or x*x+x, which is not.

There is no obvious choice to make here. Infix provides a more connected
search space, but at the expense of further loss of locality for the genetic operators;
prefix/postfix do the opposite. They also provide a more comparable search space to
that of tree-based GP. Grammar 5 (G5) shows a prefix version of G4.

3.6 Compromise Grammars

Although the transformations presented can be achieved through an algorithmic
process (and thus automated), the resulting grammars can easily grow exponentially
in both size and complexity, and become very hard to understand or modify. The
addition of a carefully chosen single non-terminal symbol (<v> in this case) is often
enough to maintain the readability of a grammar, at the expense of a slight worsening
of crossover locality. Grammar 6 (G6) illustrates this. Although not apparent when
compared to G5, in problems with large numbers of operators and variables, this can
drastically reduce the number of productions in a grammar (see Table 5, grammars
G5 (5625 productions) and G6 (17 productions)).
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4 Transformations Analysis

A series of detailed experiments were performed, using grammars G0–G6, to
analyse the effect of grammar design on search space biases, size, termination,
repetition, and performance. Table 2 shows the experimental setup used.

Populations were initialised using Random Initialisation (RND) (random integer
strings), or using a depth-less variant of Probabilistic Tree Creation 2 (PTC2) [19,
23]. These were chosen as many recent publications still use RND initialisation
[17, 21], whereas PTC2 was chosen for its proven performance [23]. Depending on
the grammar used, the specified number of codons/expansions for initialisation is
sufficient to generate expressions of up to a corresponding syntax tree depth of 5.

4.1 Initialisation Biases

This first experiment analyses the initial populations generated using the two
initialisation methods. The proportion of each phenotypic symbol (+, -, *, pdiv,
1.0 (const) and x (var)) in all successfully mapped individuals was recorded, along
with measures related to the mapping process: average phenotype length, number
of invalid (non-mapping) individuals generated, and number of repeated (valid)
phenotypic solutions. Figure 1 shows the results obtained, for 100 independent runs.

The top half of the figure illustrates how grammar design affects the initial
sampling of the search space. G0–G3 exhibit a bias towards the use of division. In
the first three grammars, this is because 2/3 of the recursive definitions of the <e>
symbol use a function of the set (+, -, *), whereas 1/3 use division; this results in a
biased sampling of 2/3÷ 3 = 2/9 for each of (+, -, *), and 3/9 for division. These
biases are held with the reduction of non-terminal symbols used in G3.

Table 2 Experimental setup Population size 500a

Number of generations 50

Random initialisation genome length 31

PTC2 max expansions 31

Maximum genome length −
Selection tournament size 1%

Elitism (for generational replacement) 1%

Crossover ratio 50%

Average mutation events per individual 1

Max wrapping events 0
a200 for Shape Match (Easy and Medium) (see
Sect. 5); 1000 for V4, K12, Housing, EPar5 and
Mux11 (see Sect. 5); 2000 for Dow (see Sect. 5)
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Fig. 1 Symbol frequency proportions (top) in the initial populations (measured over all success-
fully mapped solutions), and mapping process related statistics (bottom), using RND (left) and
PTC2 (right). Results obtained from 100 independent runs

Other biases are seen in this figure. G0–G2 and G6, due to their larger number
of non-terminal symbols, generate smaller expressions than the other grammars,
when provided with the same number of genes (RND) or expansions (PTC2); this
explains their slightly smaller frequency of functions, and higher frequency of terms
(1.0 and x). In any case, all grammars exhibit a larger proportion of terms in
their phenotypes, when using RND; this is due to the very high probability of
transforming an <e> symbol into a term (1/4 for G0, and 1/2 for all the other
grammars), meaning many solutions will consist of a single term. The use of PTC2
substantially reduces the appearance of such solutions.

The bottom half of the figure shows statistics related to the mapping process. The
average length is a ratio of the average number of functions/terms in the generated
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phenotypes (e.g. 1.0 + x and (1.0 + x) both have length 3) over 31. RND
creates much shorter solutions than PTC2, due to the 50% probability of creating
very short solutions. As for G0, although it is biased towards larger solutions, it
usually cannot create such solutions, due to its reduced probability of terminating
the mapping process. In any case, G0–G2 and G6 create shorter phenotypes, due to
the intermediate symbols used during the mapping process.

When using RND, the proportion of non-mapping individuals is alarmingly high
for explosive G0. Although far lower, G1, G2 and G6 also have some difficulty
to map integer strings, due to the number of derivation steps required to terminate
the mapping process (a problem shared with G0). G3–G5 map around 85% of the
random integer strings. Naturally, all phenotypes generated by PTC2 are valid.

Within the successfully-mapped individuals, there is a very high proportion
of repeated solutions with RND, again a consequence of the high probability
of generating single term solutions. This is slightly higher for G0, due to the
increasing difficulty in successfully mapping long individuals. PTC2, ramping by
size, generates longer solutions, and thus generates less repetition.

4.2 Random Walk Biases

This second experiment tests the effect of recombination and mutation on the initial
populations seen in the previous experiment. To this end, 50 generations were
performed in each run, but all individuals (mapping or not) were assigned the same
flat fitness. This effectively means random walks are performed, biased both by
grammar design, and by the genetic operators used (linear crossover and integer
mutation). Figure 2 shows the results obtained, at the last generation.

The top half of the figure shows no major differences between RND and PTC2.
There is an even stronger bias towards using + and 1.0, due to shorter solutions
being generated. However, the biases introduced by grammar design are still quite
present, particularly towards division, in G0–G3.

The bottom plot shows that grammar design affects the dissemination of illegal
individuals by a large amount: by generation 50, over 90% of individuals in runs
using G0 are invalid, due to its non-terminating bias. G1, G2 and G6 exhibit ≈
70% invalids, suffering from their complex, many non-terminal symbols mapping
(a problem shared with G0). G3–G5 have an expected 50% chance of generating
mapping individuals under random search. This is the case using both RND and
PTC2, which shows that this bias exists irrespective of the starting population.

Finally, there is a huge amount of repetition in the (valid) solutions generated.
The majority are short, single term solutions, as they are more likely to survive
unharmed (and unchanged) genetic operators applied with no fitness pressure.
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Fig. 2 Symbol frequency proportions (top) in the final populations (measured over all successfully
mapped solutions), and mapping process related statistics (bottom), using RND (left) and PTC2
(right). Results obtained from 100 independent runs

4.3 Termination Biases

Mapping termination has always been a hotly debated topic in GE. This third
experiment investigates how it is influenced by grammar design. The experimental
setup is the same as in the previous sub-section, except that non-mapping individuals
are assigned a very bad fitness score (the usual way of dealing with non-mapping
solutions in GE [30]), whereas all others are assigned a fixed (good) fitness. The
results obtained are shown in Fig. 3.

The top half of the figure shows once again that, irrespectively of using RND or
PTC2, symbol biases are practically the same. The previously analysed bias towards
division is still visible in G0–G3. Particularly worrying is the high bias of 1.0 over
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Fig. 3 Symbol frequency proportions (top) in the final populations (measured over all successfully
mapped solutions), and mapping process related statistics (bottom), using RND (left) and PTC2
(right). Results obtained from 100 independent runs. Non-mapping solutions were assigned the
worst possible fitness

x in G0 and G1. This is a direct reflection of the propagation and recombination
of mapping individuals, in combination with linked grammar productions. In G0, a
large amount of codons with a value ci%4 = 3 are required, to choose the recursion
stopping production “<e> becomes <v>”; but those same codons, when interpreted
under the context of <v>, will choose the term 1.0. The same effect is seen in
G1: odd codon values are required to stop recursion of the <e> symbol, but these
will choose the symbol 1.0 over the symbol x (see Table 1). These problems are
removed by unlinking production choices (grammars G2–G6).

The use of bad fitness for non-mapping individuals is effective at reducing the
number of illegal solutions, without requiring the propagation of extremely small
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solutions. There is still a large proportion of repetition, driven in this case by genetic
drift: similar individuals undergoing crossover are less likely to produce illegal
offspring, leading to increased repetition in the final population. Finally, note the
smaller difference between RND and PTC2 at the end of these runs.

4.4 Performance Biases

To test how these findings affect performance, a series of symbolic regression
experiments were ran with all seven grammars, to solve the following problems:

1. Quartic Polynomial: x4 + x3 + x2 + x;
2. Sextic Polynomial: x6 + x5 + · · · + x2 + x;
3. Octic Polynomial: x8 + x7 + · · · + x2 + x;
4. Dectic Polynomial: x10 + x8 + · · · + x2 + x.

These problems are easy to solve, with a controlled degree of difficulty, and can
be correlated to the effects of symbol biases. Note that fully configured GE runs
were performed; this included the use of tails [26] at a 50% ratio at initialisation,
for better mapping termination. Figure 4 shows the measured biases and statistics
for the quartic and dectic polynomial, using PTC2 (RND results were similar).

There is a clear bias towards the use of multiplication (mostly), addition, and x,
the symbols required to solve the problem. The smaller uses of division, subtraction,
and 1.0 are mostly due to non-effective code (bloat). It is interesting to observe
that a bias towards division is still found when using G3. Solution length is short, a
reflection of GE’s mapping process and also the easy nature of the problems, with
the downside of still a large amount of repetition in the last generation (due both to
genetic drift and to smaller solutions being generated). Finally, experiments using
G0 still generate a large amount of illegal solutions.

Figure 5 plots the results obtained. Most configurations solve the easier problem
on every run, but as the polynomial degree increases, performance slowly worsens.
Results using PTC2 are better than those using RND, as expected [23].

The graphs also illustrate how grammar design can affect (or not) the perfor-
mance of GE. The most obvious observation is that the reduction of grammar
complexity and the associated termination biases can vastly improve performance:
setups using G0–G2 are consistently worse than all other setups. Also interesting
is how the bias of G2 and G3 towards the use of division has almost no effect
on performance. This is because division can be used almost as effectively as
multiplication to increase the degree of the polynomial (x × x versus x

1/x
).

Finally, the relative differences between grammars are consistent across the two
initialisers, apart from G0: the lack of invalid solutions in the initial population of
PTC2, along with its larger initial solution size (see Fig. 1), substantially improve
the final performance of runs using G0.
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Fig. 4 Symbol frequency proportions (top) in the final populations (measured over all successfully
mapped solutions), and mapping process related statistics (bottom), using PTC2, on quartic (left)
and dectic (right) polynomial. Results obtained from 100 independent runs

5 Performance Analysis

5.1 Problems

To measure the effect of grammar design on the final outcome of GE’s evolutionary
process, a series of experiments were ran across several problem types. These
include regression, classification and design problems, across several application
domains and difficulty ranges. Table 3 lists all the problems attempted.
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Fig. 5 Mean best individual fitness for the polynomial regression experiments, using RND (left)
and PTC2 (right), averaged across 100 independent runs; error is measured as RMSE. Shades
indicate 95% confidence intervals about the mean. Cyan and blue lines (where visible) show the
RMSE of a constant predictor (mean of the train response variable) and a linear regression model
of the training set, respectively
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Table 3 Benchmark problems; if specified, E[a, b, c] means a grid of points evenly spaced with
an interval of c, from a to b inclusive, whereas U [a, b, c] means c uniform random samples drawn
from a to b inclusive; the specified type is regression (R), classification (C#) (# = number of
classes), or image matching (IM)

Training set

Name Vars. Data source Type Test Set

Keijzer-6 (K6) [12]
1 y = ∑x

i
1
i

R
E[1, 50, 1]
E[1, 120, 1]

Pagie-1 (P1) [34]
2 y = 1

1+x−4
1
+ 1

1+x−4
2

R
E[−5, 5, 0.4]
E[−5, 5, 0.1]

Vladislavleva-4
5 y = 10

5+∑5
i=1(xi−3)2

R U [0.05, 0.05, 1024]
(V4) [41] U [−0.25, 6.35, 5k]
Tower [41]

5 Gas chromatography data R
4721 points

278 points

Korns-12
5 y = 2− 2.1cos(9.8x1)sin(1.3x5) R

U [−50, 50, 10k]
(K12) [14] U [−50, 50, 10k]
Forest [2]

12 Forest Fires data R
414 points

103 points

Housing [16]
13 Housing values R

354 points

152 points

Dow Chemical
57 Chemical process data R

747 points

(Dow)a 319 points

Even-parity 5
5 Parity of boolean inputs C2

32 points

(EPar5) [15] –

Multiplexer 11
11 Boolean multiplexer C2

2048 points

(Mux11) [15] –

Breast Cancer
9 Diagnostic data C2

400 points

Wisconsin [16] 283 points

Wine Quality:
11 Physicochemical test data C10

1000 points

red [3] 599 points

Wine Quality:
11 Physicochemical test data C10

3000 points

white [3] 1898 points

Shape Match
– Generated 250x250 shape IM

–

(Easy) [33] –

Shape Match
– Generated 250x250 shape IM

–

(Medium) [33] –

Shape Match
– Generated 250x250 shape IM

–

(Hard) [33] –
aSource: http://gpbenchmarks.org/symbolicregressioncompetition/

http://gpbenchmarks.org/symbolicregressioncompetition/
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5.2 Grammars

For every problem attempted, seven grammar versions were designed, G0–G6,
as detailed in Sect. 3. Each of the grammars respects as much as possible the
original function and terminal sets as defined in their original publications; this
is important for benchmarking purposes, as attempting to solve a problem using
different functions can severely alter the difficulty of the benchmarks [27]. For
all problems, constants were created using digit concatenation, with 100 possible
values within the range [0.0 . . . 9.9], and a step of 0.1.

Each of the problems was attempted using both RND and PTC2, over 100
independent runs. To illustrate the grammar transformation process, and its impact
on the search effectiveness of GE, three problems are examined in detail: Keijzer-6,
Vladislavleva-4, and Shape Match (hard).

5.2.1 Keijzer-6

The Keijzer-6 (K6) problem [12], also known as the Harmonic function, is a single-
variable problem, using only addition, multiplication and three unary functions. A
typical GE grammar defining possible solutions for this problem is shown in Table 4,
cell G0. The symbol <e> has more productions creating new <e> symbols rather
than mapping them to something else, so the G1 version addresses this, by having a
“|<v>” production for each production replacing one <e> symbol with two. There
are two sets of non-terminal symbols with linked productions: <o> with <v>, and
<e> with <d>. This is addressed in G2, through repetition of productions.

G3 reduces the number of non-terminal symbols to a single one, while main-
taining the biases of G1 and G2. This results in a much larger grammar, with 3000
production rules. Grammar G4 addresses the slightly higher bias towards use of the
operators + and ∗ over the functions inv, neg and sqrt .

Grammar G5 is a conversion to prefix notation, which considerably reduces
the complexity of the grammar, by removing bracketed versions of the + and ∗
operators. Finally, G6 separates the definition of functions and terminals into two
symbols (<e> and <v>), resulting in a very compact grammar, but without the
extra complexity of grammars G0–G2.

5.2.2 Vladislavleva-4

The Vladislavleva-4 (V4) problem [41], also known as the UBall5D function, is a
five-variable problem, and its function set, as defined in its original publication, is
extensive:

– Functions: +,−, ∗, /, square, xreal , x + real, x · real

– Terminals: x0, x1, x2, x3, x4
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Table 4 Grammars used for the Keijzer-6 (K6) problem, versions G0–G6; a set of productions
followed by {n} means they are repeated n times, whereas the notation α| . . . |δ is shorthand for
a production for each of the elements in the sequence [α..δ]; constants in G6 are created using
GECodonValue [24]

G0 G1 G2

<s>::=<e> <s>::=<e> <s>::=<e>

<e>::=<e><o><e> <e>::=<e><o><e> <e>::=<e><o><e>

|(<e><o><e>) | <v> | <v>

| <f> (<e>) |(<e><o><e>) | (<e><o><e>)

| <v> | <v> | <v>

<o>::= +|∗ | <f> (<e>) | <f> (<e>)

<f>::= inv|neg|sqrt <o>::= +|∗ <o>::= +|+
<v>::=<d>.<d> <f>::= inv|neg|sqrt | ∗ |∗

|x0 <v>::=<d>.<d> <f>::= inv|neg|sqrt

<d>::= 0|1|2|3|4|5|6|7|8|9 |x0 <v>::=<d>.<d>

<d>::= 0|1|2|3|4|5|6|7|8|9 | x0
<d>::= 0|0|0|0|0|1|1|1|1|1

|2|2|2|2|2|3|3|3|3|3
|4|4|4|4|4|5|5|5|5|5
|6|6|6|6|6|7|7|7|7|7
|8|8|8|8|8|9|9|9|9|9

G3 G4 G5

<e>::=<e> + <e> {300} <e>::=<e> + <e> {300} <e>::= + <e><e> {100}
| <e> ∗ <e> {300} | <e> ∗ <e> {300} | ∗ <e><e> {100}
| x0 {300} | x0 {300} | x0 {100}
| 0.0| . . . |9.9 {3} | 0.0| . . . |9.9 {3} | 0.0| . . . |9.9
| (<e> + <e>) {300} | (<e> + <e>) {300} | inv(<e>) {100}
| (<e> ∗ <e>) {300} | (<e> ∗ <e>) {300} | neg(<e>) {100}
| x0{300} | x0{300} | sqrt (<e>) {100}
| 0.0| . . . |9.9 {3} | 0.0| . . . |9.9 {3}
| inv(<e>) {200} | inv(<e>) {300}
| neg(<e>) {200} | neg(<e>) {300}
| sqrt (<e>) {200} | sqrt (<e>) {300}

G6

<e>::= + <e><e> | <v>

| ∗ <e><e> | <v>

|inv <e> |neg <e> |sqrt <e>

<v>::= x0| <GECodonV alue{0.0 : 9.9 : 0.1}>

This results in a complex base grammar, shown in Table 5, cell G0. The definition
of the <e> symbol has a heavy bias towards growth, which is addressed in G1. It
also has a more complex set of linked production, between the symbols <a> (five
productions), <v> (five productions) and <d> (ten productions); G2 addresses this
by introducing 10 copies of each original production associated with <a>, and 50
copies of each original production associated with <v>.

As before, G3 reduces the number of non-terminal symbols to just one, but to
ensure the same bias choices as G1 and G2, and due to the required combinations
of 5 variables and 100 constants for certain operators, it defines 17,498 production
rules.2 Grammar G4 balances the bias between all four binary operators (+,−, ∗, /),
with 1250 productions using each (625 bracketed and 625 non-bracketed), and
the single unary operator, square (625 productions); the resulting grammar, while
smaller, still contains 10,625 productions.

2The required number of 2500/3 copies of each of the productions using the operators +,−, ∗
were rounded to 833, resulting in a negligible bias.
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Table 5 Grammars used for the Vladislavleva-4 (V4) problem, versions G0–G6; a set of
productions followed by {n} means they are repeated n times, whereas the notation α| . . . |δ is
shorthand for a production for each of the elements in the sequence [α..δ]; constants in G6 are
created using GECodonValue [24]

G0 G1 G2

<s>::=<e> <s>::=<e> <s>::=<e>

<e>::=<e><o><e> <e>::=<e><o><e> <e>::=<e><o><e>

|(<e><o><e>) | <a> | <a>

| <f 1> (<e>, <e>) |(<e><o><e>) |(<e><o><e>)

| <f 2> (<e>, 2) | <a> | <a>

| <a> | <f 1> (<e>, <e>) | <f 1> (<e>, <e>)

<o>::= +| − |∗ | <a> | <a>

<f 1>::= pdiv | <f 2> (<e>, 2) | <f 2> (<e>, 2)

<f 2>::= pow <o>::= +| − |∗ <o>::= +| − |∗
<a>::= pow(<v>, <d>.<d>) <f 1>::= pdiv <f 1>::= pdiv

|(<v> + <d>.<d>) <f 2>::= pow <f 2>::= pow

|(<v> ∗ <d>.<d>) <a>::= pow(<v>, <d>.<d>) <a>::= pow(<v>, <d>.<d>){10}
| <v> |(<v> + <d>.<d>) |(<v> + <d>.<d>){10}
| <d>.<d> |(<v> ∗ <d>.<d>) |(<v> ∗ <d>.<d>){10}

<v>::= x0|x1|x2|x3|x4 | <v> | <v> {10}
<d>::= 0|1|2|3|4|5|6|7|8|9 | <d>.<d> | <d>.<d> {10}

<v>::= x0|x1|x2|x3|x4 <v>::= x0|x1|x2|x3|x4{50}
<d>::= 0|1|2|3|4|5|6|7|8|9 <d>::= 0|1|2|3|4|5|6|7|8|9

G3 G4 G5

<e>::=<e> + <e> {833} <e>::=<e> + <e> {625} <e>::= + <e><e> {625}
| <e> − <e> {833} | <e> − <e> {625} |− <e><e> {625}
| <e> ∗ <e> {833} | <e> ∗ <e> {625} |∗ <e><e> {625}
|(<e> + <e>) {833} | <e> pdiv <e> {625} |pdiv <e><e> {625}
|(<e> − <e>) {833} |(<e> + <e>) {625} |pow <e> 2 {625}
|(<e> ∗ <e>) {833} |(<e> − <e>) {625} |pow x0 0.0 | . . . |pow x0 9.9
|pdiv(<e>, <e>) {2500} |(<e> ∗ <e>) {625} |pow x1 0.0 | . . . |pow x1 9.9
|pow(<e>, 2) {2500} |(<e> pdiv <e>) {625} |pow x2 0.0 | . . . |pow x2 9.9
|pow(x0, 0.0)| . . . |pow(x0, 9.9) {3} |pow(<e>, 2) {2500} |pow x3 0.0 | . . . |pow x3 9.9
|pow(x1, 0.0)| . . . |pow(x1, 9.9) {3} |pow(x0, 0.0)| . . . |pow(x0, 9.9) {2} |pow x4 0.0 | . . . |pow x4 9.9
|pow(x2, 0.0)| . . . |pow(x2, 9.9) {3} |pow(x1, 0.0)| . . . |pow(x1, 9.9) {2} | + x0 0.0 | . . . | + x0 9.9
|pow(x3, 0.0)| . . . |pow(x3, 9.9) {3} |pow(x2, 0.0)| . . . |pow(x2, 9.9) {2} | + x1 0.0 | . . . | + x1 9.9
|pow(x4, 0.0)| . . . |pow(x4, 9.9) {3} |pow(x3, 0.0)| . . . |pow(x3, 9.9) {2} | + x2 0.0 | . . . | + x2 9.9
|(x0+ 0.0)| . . . |(x0+ 9.9) {3} |pow(x4, 0.0)| . . . |pow(x4, 9.9) {2} | + x3 0.0 | . . . | + x3 9.9
|(x1+ 0.0)| . . . |(x1+ 9.9) {3} |(x0+ 0.0)| . . . |(x0+ 9.9) {2} | + x4 0.0 | . . . | + x4 9.9
|(x2+ 0.0)| . . . |(x2+ 9.9) {3} |(x1+ 0.0)| . . . |(x1+ 9.9) {2} | ∗ x0 0.0 | . . . | ∗ x0 9.9
|(x3+ 0.0)| . . . |(x3+ 9.9) {3} |(x2+ 0.0)| . . . |(x2+ 9.9) {2} | ∗ x1 0.0 | . . . | ∗ x1 9.9
|(x4+ 0.0)| . . . |(x4+ 9.9) {3} |(x3+ 0.0)| . . . |(x3+ 9.9) {2} | ∗ x2 0.0 | . . . | ∗ x2 9.9
|(x0 ∗ 0.0)| . . . |(x0 ∗ 9.9) {3} |(x4+ 0.0)| . . . |(x4+ 9.9) {2} | ∗ x3 0.0 | . . . | ∗ x3 9.9
|(x1 ∗ 0.0)| . . . |(x1 ∗ 9.9) {3} |(x0 ∗ 0.0)| . . . |(x0 ∗ 9.9) {2} | ∗ x4 0.0 | . . . | ∗ x4 9.9
|(x2 ∗ 0.0)| . . . |(x2 ∗ 9.9) {3} |(x1 ∗ 0.0)| . . . |(x1 ∗ 9.9) {2} |x0|x1|x2|x3|x4 {100}
|(x3 ∗ 0.0)| . . . |(x3 ∗ 9.9) {3} |(x2 ∗ 0.0)| . . . |(x2 ∗ 9.9) {2} |0.0| . . . |9.9 {5}
|(x4 ∗ 0.0)| . . . |(x4 ∗ 9.9) {3} |(x3 ∗ 0.0)| . . . |(x3 ∗ 9.9) {2}
|x0|x1|x2|x3|x4 {300} |(x4 ∗ 0.0)| . . . |(x4 ∗ 9.9) {2}
|0.0| . . . |9.9 {15} |x0|x1|x2|x3|x4 {200}

|0.0| . . . |9.9 {10}
G6

<e>::= + <e><e>

|− <e><e>

|∗ <e><e>

|pdiv <e><e>

|pow <e> 2
|pow <v><GECodonV alue{0.0 : 9.9 : 0.1}>
|+ <v><GECodonV alue{0.0 : 9.9 : 0.1}>
|∗ <v><GECodonV alue{0.0 : 9.9 : 0.1}>
| <v>

| <v>

| <GECodonV alue{0.0 : 9.9 : 0.1}>
| <GECodonV alue{0.0 : 9.9 : 0.1}>

<v>::= x0|x1|x2|x3|x4
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The conversion to a prefix notation in G5 further reduces complexity, but it
still contains 5625 productions. Finally, the separation of variables to a different
symbol (<v>) removes the complexity of variable and constant combination, and
the resulting grammar is far more compact and understandable.

5.2.3 Shape Match (Hard)

The Shape Match problem [33] was setup as a demonstration of the use of shape
grammars with GE. The objective is to match a pre-defined image, defined in a
250x250 binary pixel matrix, using a sequence of shape creation and manipulation
instructions. It was defined using three variants, easy, medium and hard, with
increasingly more complex target images. The drawing functions available are as
follows: s0 moves the shape right 10 pixels; s1 moves the shape down 10 pixels;
s2 moves the shape left 10 pixels; s3 moves the shape up 10 pixels; gro doubles
the size of the shape; shrnk halves the size of the shape; [ and ] push and pop the
pen’s state (position where it will draw next) onto and off the stack. Finally, sqr
draws a square, and crcl draws a circle.

Table 6 shows the original grammar [33] as G0, with a call to a Python interpreter.
It has no recursively defined binary operators: a single call to <p>::=<e> stops
recursion of symbol <p>, and likewise, a single call to <e>::=<v> terminates the
recursion of <e>. As such, G1 is identical to G0. There are, however, two sets of
non-terminal symbols with linked productions: <p> with <v>, and <e> with <o>.
G2 addresses this, through the explained approach of repetition of productions.

G3 reduces the number of non-terminal symbols to three. Although the first
symbol (<s>) is of minor importance (it has a single associated production, so no
codon is used, and it appears only once, at the start), the recursive nature of symbols
<p> and <e> in G0–G2 requires the presence of both. Also, after the incorporation
of symbols <o> and <v> into <e>, the resulting number of productions is even,
which links them with those associated with <p>, so the explained unlinking
process was employed. G4 is similar, but reduces the bias of the [] operator to that
of all other transformations.

G5 replaces [] with a prefix equivalent operator, pushed. This allows the
definition of what is essentially a single non-terminal symbol grammar (not counting
the <s> symbol, as explained above). The exact biases of G4 are impossible to keep,
so a compromise was chosen. Finally, G6 uses three symbols, <p>, <o> and <v>,
to create a compact and highly readable grammar.

5.3 Experimental Setup

The experimental setup used was the same as in Table 2, but using 50% non-coding
tails at initialisation [26]. Also, as seen in Sect. 4.1, different grammars will generate
different solution sizes at initialisation, with direct influence in their initial fitnesses.
In order to properly analyse the effect of grammar design in the search capability
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Table 6 Grammars used for the Shape Match (hard) problem, versions G0–G6; a set of produc-
tions followed by {n} means they are repeated n times, whereas the notation α| . . . |δ is shorthand
for a production for each of the elements in the sequence [α..δ]; constants in G6 are created using
GECodonValue [24]

G0 G1 (same as G0) G2

<s>::= python hard.py <p> <s>::= python hard.py <p> <s>::= python hard.py <p>

<p>::=<e> <p>::=<e> <p>::=<e>

| <e><p> | <e><p> | <e><p>

<e>::=<v> <e>::=<v> <e>::=<v>

| <o><e> | <o><e> | <o><e>

| [<e>] | [<e>] | [<e>]
<o>::= s0 <o>::= s0 <o>::= s0|s0|s0

| s1 | s1 | s1|s1|s1
| s2 | s2 | s2|s2|s2
| s3 | s3 | s3|s3|s3
| gro | gro | gro|gro|gro

| shrnk | shrnk | shrnk|shrnk|shrnk

<v>::= sqr <v>::= sqr <v>::= sqr|sqr

| crcl | crcl | crcl|crcl
G3 G4 G5

<s>::= python hard.py <p> <s>::= python hard.py <p> <s>::= python hard.py <p>

<p>::=<e> {18} <p>::=<e> {42} <p>::= sqr {7}
| <e><p> {18} | <e><p> {42} | crcl {7}

<e>::= sqr {3} <e>::= sqr {7} | s0 <p> {2}
| crcl {3} | crcl {7} | s1 <p> {2}
| s0 <e> | s0 <e> {4} | s2 <p> {2}
| s1 <e> | s1 <e> {4} | s3 <p> {2}
| s2 <e> | s2 <e> {4} | gro <p> {2}
| s3 <e> | s3 <e> {4} | shrnk <p> {2}
| gro <e> | gro <e> {4} | pushed <p> {2}
| shrnk <e> | shrnk <e> {4} | sqr <p> {7}
| [<e>] {6} | [<e>] {4} | crcl <p> {7}

G6

<s>::= python hard.py <p>

<p>::=<v> | <t><p> | <v><p>

<o>::= s0 s1 | s2 | s3 | gro | shrnk | pushed

<v>::= sqr | crcl

Table 7 Genome length (for RND) and min/max derivation steps (for PTC2) used during
initialisation, for the three problems analysed

Problem Parameter g0 g1 g2 g3 g4 g5 g6

Keijzer6 Genome length 30 30 30 15 15 15 23

Min. der. steps 3 3 3 1 1 1 2

Max. der. steps 31 31 31 15 15 15 23

Vladislavleva4 Genome length 54 54 54 15 15 15 31

Min. der. steps 4 4 4 1 1 1 2

Max. der. steps 55 55 55 15 15 15 31

Shape Match (hard) Genome length 24 24 24 14 14 14 23

Min. der. steps 4 4 4 3 3 2 3

Max. der. steps 25 25 25 15 15 16 24

of GE, experiments using different grammars were setup such that they generate
similarly sized phenotype solutions at initialisation. As such, RND and PTC2 were
setup as shown in Table 7. Finally, protected versions of some operators were used,
such as division (1.0 if divisor < 1e− 5), inversion (1.0 if argument < 1e− 5), and
square root (

√|x|).
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5.4 Results

Figure 6 plots the mean best train results for the K6, V4 and Shape Match (hard)
problem, using RND and PTC2 initialisation.3 All grammar variants find similarly
good solutions for the K6 experiment at the 50th generation, using PTC2, but much
larger differences are found between the results obtained with grammars G0–G2
versus those with grammars G3–G6, when using RND. A similar result is observed
for the V4 experiment, except that in this case, the difference between G0–G2 and
G3–G6 is more evident when using PTC2.

Finally, the Shape Match (hard) experiments again show a large difference
between both clusters of grammars, along with the positive effect in convergence
of removing the high bias towards the [] operator in G4–G6 (applying it more than
once has no practical effect). Although there is a very marked change in the speed
of convergence towards an optimal solution, particularly with the reduction of non-
terminal symbols, eventually all grammar solutions find similarly good solutions.

5.4.1 Significance and Test Results

In order to quantify the effect of each grammar design on the search effectiveness
of GE, two-sample Mann-Whitney U-tests were calculated for final median best fit
results, for all grammars. The results are shown in Table 8.

These are similar to what was observed in the K6, V4 and Shape Match problems.
Overall, runs using G3–G5 are significantly better than all others. Small differences
between G3–G5 are mostly problem domain specific. G0–G2 are often significantly
better only amongst themselves, with the exception of a few noisy real-world
datasets, such as Tower and Wine Quality. G6 seems to provide a compromise
between performance and complexity of grammar. As before, G0 does particularly
bad with RND initialisation, and differences between different grammars are less
evident when using PTC2.

Regarding test performance, no validation or early-stopping approaches were
employed in these experiments, so it is not unreasonable to expect some level of
overfitting, particularly from approaches with very good training performance. The
statistical significance results are shown in Table 9.

As expected, the test results are far less clear cut. Results are still better
when using G3–G5, but are very problem-dependent. This mostly results from
problems such as K12: it is such a hard problem to solve using the original
function and terminal set [14] (which uses no trigonometric functions), that any
small improvement in training performance invariably led to a degradation in test
performance.

3As the focus of this study is on grammar design, no regression performance improving techniques
such as linear scaling [12] or cross-validation were used.
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Fig. 6 Mean best train scores for the K6 (top), V4 (middle) and Shape match (hard) (bottom)
experiments, using RND (left) or PTC2 (right), averaged across 100 independent runs; error is
measured as the Root Mean Squared Error (RMSE) for K6 and V4, or the number of mismatched
pixels for shape matching. Shades indicate 95% confidence intervals about the mean. Cyan and
blue lines (where visible) indicate the RMSE of a constant predictor (mean of the train response
variable) and a linear regression model of the training set, respectively
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Table 8 Mann-Whitney U-tests of final median best training fit results, for all problems attempted;
each number is a count of all grammars against which a significantly differently better performance
was measured (results across 100 independent runs)

G0 G1 G2 G3 G4 G5 G6
RND BreastCancerW 0 0 0 5 3 0 0

Dow 0 0 0 3 3 3 3

EvenParity5 0 0 0 4 4 4 0

Forest 0 1 1 4 4 5 1

Housing 0 1 1 3 3 3 3

Keijzer6 0 0 0 3 4 4 3

Korns12 0 0 0 3 4 6 4

Multiplexer11 0 1 1 3 3 1 4

Pagie1 0 0 0 4 4 4 0

Tower 0 2 2 4 5 2 1

Vladislavleva4 0 0 0 4 0 4 3

WineQualityRed 0 1 1 5 5 2 2

WineQualityWhite 0 1 1 3 3 3 3

ShapeEasy 0 0 0 0 0 0 0

ShapeMedium 0 0 0 0 0 0 0

ShapeHard 0 0 0 0 0 1 0

Sum 0 7 7 48 45 42 27

Mean 0 0.438 0.438 3 2.812 2.625 1.688

Median 0 0 0 3 3 3 1.5

Std. dev. 0 0.6292 0.6292 1.633 1.797 1.857 1.580
PTC2 BreastCancerW 0 0 0 4 4 1 0

Dow 0 0 0 2 0 2 3

EvenParity5 0 0 0 1 1 4 1

Forest 0 0 0 2 4 1 0

Housing 0 0 0 3 2 2 2

Keijzer6 0 0 0 3 4 4 0

Korns12 0 0 0 3 4 5 6

Multiplexer11 0 1 0 0 0 0 4

Pagie1 0 0 0 4 4 4 2

Tower 0 0 1 1 3 1 1

Vladislavleva4 0 0 0 3 3 3 3

WineQualityRed 1 1 0 2 2 0 0

WineQualityWhite 1 1 3 2 1 0 1

ShapeEasy 0 0 0 0 0 0 0

ShapeMedium 0 0 0 0 0 0 0

ShapeHard 0 0 0 0 0 0 0

Sum 2 3 4 30 32 27 23

Mean 0.125 0.188 0.25 1.875 2 1.688 1.438

Median 0 0 0 2 2 1 1

Std. dev. 0.342 0.403 0.774 1.408 1.713 1.778 1.788
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Table 9 Mann-Whitney U-tests of final median best test fit results (of best training solutions), for
all problems with a test set; each number is a count of all grammars against which a significantly
differently better performance was measured (results across 100 independent runs)

G0 G1 G2 G3 G4 G5 G6
RND BreastCancerW 0 0 0 0 0 1 0

Dow 0 0 0 4 2 2 0

Forest 6 2 1 0 0 0 3

Housing 0 1 1 3 3 3 3

Keijzer6 0 0 0 2 4 4 3

Korns12 3 3 6 3 0 0 1

Pagie1 0 0 0 4 4 4 0

Tower 1 0 0 0 0 0 1

Vladislavleva4 0 1 1 0 0 0 1

WineQualityRed 0 1 1 5 5 2 2

WineQualityWhite 5 0 0 0 0 0 0

Sum 15 8 10 21 18 16 14

Mean 1.364 0.727 0.909 1.909 1.636 1.455 1.273

Median 0 0 0 2 0 1 1

Std. dev. 2.248 1.009 1.758 1.973 2.014 1.635 1.272
PTC2 BreastCancerW 0 0 0 0 4 4 0

Dow 0 0 0 1 2 0 0

Forest 1 0 0 0 0 0 1

Housing 0 0 0 3 2 2 2

Keijzer6 1 0 0 1 2 2 0

Korns12 4 3 3 3 2 0 0

Pagie1 0 0 0 4 3 4 2

Tower 1 0 0 0 0 0 1

Vladislavleva4 1 1 0 0 0 0 1

WineQualityRed 0 1 0 2 1 0 0

WineQualityWhite 0 0 0 0 0 0 0

Sum 8 5 3 14 16 12 7

Mean 0.727 0.455 0.273 1.273 1.455 1.091 0.636

Median 0 0 0 1 2 0 0

Std. dev. 1.191 0.934 0.905 1.489 1.368 1.640 0.809

5.5 Analysis

The results obtained show just how much the design of a grammar can affect
the search capability of GE. The most obvious performance improvements come
from the construction of balanced grammars, and the reduction of the number
of non-terminal symbols. These come at a price, however, particularly the latter:
the complexity of the generated grammars can make them particularly hard to
read and/or modify by hand. However, the application of these transformations
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is a deterministic process, meaning that they can be applied automatically: this
allows manual grammar modifications to be applied to the simpler versions of the
grammars, with subsequent application of automatic transformations. In any case,
even a partial (manual) application of some of these modifications can be of use, as
seen with the results for G6 variants.

The usefulness of some of these applications is problem-dependent. This is par-
ticularly the case of bias-related transformations, expressed in the results obtained
with G2 and G4. For the problems attempted, the unlinking process employed
with G2 grammars does not seem to confer any performance advantage when
compared to G1 grammars. Likewise, the removal of biases towards certain
operators employed in G4 grammars does not seem to confer any advantage, in
the problems attempted. Finally, the switch from infix to prefix notation only makes
a small difference for a few problems (for better or worse).

It is worth pointing out again that these results relate only to GE using a linear
genome representation. Derivation tree based approaches make use of different
search operators, and as such, the effect of grammar design is markedly different.

Another observation is the need to understand grammar design, when setting up
any initialisation procedure (even something as simple as RND initialisation). The
size of genotype structures required to generate certain solution (phenotype) size
ranges needs to be adapted, depending on the grammar used.

6 Conclusions

Grammar design is one of the main tasks in GE: in order to write a good grammar,
deep knowledge in both GE and the application domain are required. The experi-
ments examined in this chapter, however, show that this is not necessarily always
the case: there are specific grammar design principles that can be applied when
attempting to solve any problem using GE, which do not require domain knowledge.
Of the transformations analysed, the creation of recursion-balanced grammars and
the reduction of the number of non-terminal symbols are particularly useful for
improving the performance of GE, when using a linear genome representation.

Fixing symbol biases does not necessarily lead to better performance: this is
completely problem dependent, and it can both degrade or improve performance.
But it does affect search space exploration, as shown in the experiments conducted.
This leads to two recommendations:

– When designing a GE grammar to compare its performance with systems such
as GP, respect the symbol biases of the original system;

– When applying GE to a real-world problem, where symbol biases are known,
use this knowledge to bias the exploration of the search space.

GE is like any other search algorithm, and in fact like any tool: it has its
advantages and disadvantages, and will only provide its best performance if
correctly used. There has been a recent surge of publications criticising GE’s
performance [17, 18, 21, 42], some even deeming that its performance “resembles
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that of random search” [42]. But most of the results provided were the result of using
badly designed grammars, and poor experimental setup. The analysis and results
presented in this chapter aim to provide another step towards achieving the goal of
Understanding Grammatical Evolution.
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On the Non-uniform Redundancy
of Representations for Grammatical
Evolution: The Influence of Grammars

Dirk Schweim, Ann Thorhauer, and Franz Rothlauf

Abstract The representation used in grammatical evolution (GE) is non-uniformly
redundant as some phenotypes are represented by more genotypes than others.
This article studies how the non-uniform redundancy of the GE representation
depends on various types of grammars. When constructing the phenotype tree
from a genotype, the used grammar determines Bavg, the average branching factor.
Bavg measures the expected number of non-terminals chosen when mapping one
genotype codon to a phenotype tree node. First, the paper illustrates that the GE
representation induces a bias towards small trees. This bias gets stronger with lower
Bavg. For example, when using a grammar with Bavg = 0.5, 75% of all genotypes
encode a phenotype tree of size one (codon length 10, two bits per codon, no
wrapping, and random bit initialisation). Second, for Bavg ≥ 1, the expected size
of a phenotype tree is infinite. The resulting bias towards invalid trees increases
with higher Bavg. For example, for a grammar with Bavg = 2.25, around 75% of
all genotypes encode invalid trees. In summary, the GE encoding is strongly non-
uniformly redundant and the bias depends on Bavg. As a compromise between the
different biases, the results of this study suggest setting Bavg ≈ 1.

1 Introduction

If a heuristic search procedure visits some solutions or solution structures more
often than others, a bias exists [1, 20]. It is possible to distinguish desired bias
from unwanted bias. Desired bias guides the search towards promising solutions,
whereas unwanted bias does the contrary [1, 14]. For example, selection operators
in evolutionary algorithms (EAs) lead to a desired bias, as they are intended to guide
the search towards promising solutions. Hence, selective bias is used on purpose in
various types of EAs, e.g., in grammatical evolution (GE) [17]. Other types of biases
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can also occur during the search process. Their occurrence is sometimes hidden in
the sense that their cause is not transparent or that the user is not even aware of
them [1]. This can be a problem if the biases hinder the search from finding better
solutions. Thus, it is important to make different types of biases transparent and
to measure their effects such that EA users can deliberately decide either to avoid
them or to purposefully use them, in order to guide the search towards promising
high-quality solutions.

Many empirical studies have also confirmed that the combination of representa-
tion and variation operator can be biased [1, 15]. A representation assigns genotypes
to corresponding phenotypes and it is possible to distinguish direct representations
from indirect representations [1, 13, 14]. Direct representations do not differentiate
between genotypes and phenotypes. A prominent example is (standard tree-based)
genetic programming (GP) [5], where phenotype solutions are encoded by trees.
Variation operators are applied on these trees, which can often be directly interpreted
as a phenotype, e.g., as mathematical expressions. On the contrary, an indirect
representation explicitly distinguishes between genotypes and phenotypes, making
an additional mapping between them necessary.

GE is an EA variant which uses an indirect representation [17], where genotypes
are variable-length binary strings. A grammar in Backus-Naur form (BNF) is
used to decode genotypes into their corresponding phenotypes [17]. The variation
operators—like mutation and crossover—are applied to genotypes, but the actual
effects of these operators are observed in the corresponding phenotypes [13, 14].
The used representation that maps genotypes to corresponding phenotypes is a
source of search bias if the representation is non-uniformly redundant [1, 15].

An indirect representation is redundant if more than one genotype represents
the same phenotype [15]. Furthermore, a representation is uniformly redundant
if every phenotype is represented by the same number of genotypes; it is non-
uniformly redundant if one or more phenotypes are represented by a larger number
of genotypes than others. Hence, indirect representations can be biased. This could
lead to unwanted bias if optimal solutions or parts of them are under-represented
(compared to worse solutions), as optimal solutions will then probably be visited
less often during search [15].

In this article, we analyse the decoding process from genotypes to phenotypes
as a possible source for non-uniform redundancy in GE representations. We extend
previous results [18] and analyse a diverse set of grammars. In addition, we provide
a model explaining the number of invalid phenotypes in GE.

In our experiments, we created all possible genotype bit-strings for a fixed
string length as well as the corresponding phenotype trees using various types of
grammars. Since the decoding process in GE is deterministic and we considered all
possible genotypes, we obtained frequencies (and not probabilities) for the number
of genotypes mapped to phenotypes. When constructing the tree from a genotype,
the used grammar determines the average branching factor Bavg, which measures
the expected number of non-terminals chosen when mapping one genotype codon
to a phenotype tree node. Thus, by using Bavg, we were able to compare different
grammars. We confirmed previous results that GE representations are redundant,
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since the number of different genotypes strongly exceeds the number of different
phenotypes. The redundancy is non-uniform because some phenotypes are encoded
by genotypes with (much) higher frequencies.

We observed a strong bias towards short trees in the phenotype space. In fact,
trees with a size of one were strongly over-represented (e.g., for a grammar with
a low Bavg = 0.5, we observed trees with sizes of one or three with a frequency
of 89%). This bias gets stronger with lower Bavg. In contrast, deeper and larger
trees are encoded with much lower frequencies (e.g., for the same grammar with
a low branching factor, trees with a size larger than three were observed with a
frequency of 9%). We also found that the type of grammar has a strong effect on the
frequencies of invalid phenotype trees. Grammars with a high branching factor (i.e.,
due to a high probability of choosing non-terminals during decoding) produce more
invalid trees. In invalid trees, tree creation could not be completed. We show that the
expected tree size resulting from GE’s tree creation process (or more generally the
decoding) can be modelled by using a geometric series. Thus, the expected tree size
for grammars with Bavg ≥ 1 tends to infinity. In summary, representations in GE
are biased and the type of grammar has a strong impact on this bias as it influences
the number of genotypes that encode one particular phenotype and the number of
invalid phenotypes.

The article is structured as follows. In Sect. 2, we describe recent work on bias
of GE representations. In Sect. 3, we describe a model to calculate the expected tree
size resulting from GE’s tree creation process. The model is based on previous work
on types of grammars in GE and enabled us to analyse the tree creation process.
Our experimental setup for this analysis is described in Sect. 4. The results of our
experiments are presented in Sect. 5. The article ends with concluding remarks.

2 Bias of Representations in Grammatical Evolution

A variety of work studies how the chosen grammar affects GE performance.
Hemberg et al. [4] considered three different grammars (postfix, prefix, infix) and
examined their influence on GE performance for symbolic regression problems.
They observed no differences between the grammars for small problem instances.
However, for large problems, a postfix grammar was found to be advantageous.
Fagan et al. [2] compared GE performance for four different genotype-phenotype
mappings (depth-first, breadth-first, random, and πGE [10]) for four benchmark
problems. The πGE mapping1 outperformed the other mappings in three out of
four problems [10]. Breadth-first mapping produced larger trees in three out of
four problems compared to the other mappings. These studies indicate that the tree

1πGE uses a flexible mapping where the genome defines not only the application of rules as in
standard GE, but also specifies which non-terminal is decoded next. This implies that the order of
non-terminal expansions is itself evolved in πGE [10].
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construction process and the grammar used in this process are both relevant to the
design of a well-performing GE search heuristic.

Another study that analysed selecto-recombinative genetic algorithms (GAs)
supported this finding. Rothlauf and Goldberg [15] examined the impact of redun-
dant representations on the performance of GAs. If representations are uniformly
redundant and the order of redundancy is low, the performance of the GA is not
affected. On the contrary, GA performance can be increased or decreased if non-
uniformly redundant representations are used. In their experiments, Rothlauf and
Goldberg [15] illustrated that search performance can be increased when optimal
solutions are over-represented and it can be decreased when optimal solutions are
under-represented.

A number of other studies analysed the effect of bias in GE. Montes de Oca [7]
focused on creating numerical values by concatenating digits and found that the
most-commonly used GE grammar induces a bias towards short-length numbers.
Harper [3] showed that standard GE random bit initialisation produces trees that
are non-uniformly distributed since “80% of the trees have 90% of their nodes
on one side of the tree or the other” [3]. Thus, trees are biased to be “tall and
skinny” [3]. Thorhauer and Rothlauf [19] found that a random walk with GE using
standard operators (one-point crossover, mutation and duplication) has a strong bias
towards “sparse” trees. Murphy et al. [8] examined different types of biases which
are introduced by using tree-adjoining grammars and found that this bias depends
on the grammar and the problem.

Ryan and Azad [16] analysed standard random bit initialisation of genotypes in
GE. They noted that “depending on the grammar employed, a significant proportion
of individuals in the initial populations can consist of a single terminal” [16].
They propose “sensible initialisation”, an initialisation scheme comparable to Kozas
“ramped-half-and-half” [5], which results in a greater variety of trees in the initial
population [16]. Similar to this, Nicolau [9] compared several initialisation routines.
He found 73.5% of generated trees to be identical (with random bit initialisation
and a symbolic regression single non-terminal, prefix notation grammar). A large
number of these trees had a size of one. Also, trees were, in general, similar to each
other when using random bit initialisation [9].

O’Neill and Ryan examined the effect of genetic code degeneracy [11, 12].
Genetic code degeneracy exists if codons consist of more bits than actually
necessary to represent the number of choices within the production rules of a
grammar. For example, the number of possible decisions encoded in a codon with a
length of two bits is four (00, 01, 10 and 11). If the number of choices to substitute
a non-terminal in the production rules of a grammar is smaller than four, the
grammar is degenerated [11, 12]. O’Neill et al. [12] found that degeneracy leads to a
mapping bias. The strength of this bias depends on both the number of choices in the
production rules of the grammar to choose from and on how many different choices
each codon can represent (determined by the number of bits of a codon) [12]. In
most realistic grammars, degeneracy is common since the usual codon size is 8 bit,
meaning that a codon can express 28 = 256 different choices. However, in most
GE applications, the number of decisions in production rules is usually much lower,
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which can lead to an unwanted bias. To circumvent this, O’Neill et al. suggested
using grammar defined introns [12].

3 Balanced, Explosive, and Collapsing Grammars

We will first define the terms genotype space and phenotype space. Then, we will
describe how grammars are used when decoding genotypes into phenotypes in GE.
Following this, we will define the average branching factor and use this measure to
distinguish between balanced, explosive, and collapsing grammars.

The genotype search space Φg is defined as the set of possible genotypes [15].
The phenotype space Φp is the set of all encoded valid and invalid phenotypes [15].
We assume that every phenotype can be assigned to at least one genotype and vice
versa. If a phenotype is not represented by any of the genotypes, it is not an element
of Φp and cannot be found by an optimisation algorithm [15].

In GE, a grammar in BNF determines how genotypes are decoded to their
corresponding phenotypes [17]. A grammar can be defined by a tuple {N, T , P, S}.
When starting the decoding from geno- to phenotype in GE, an appropriate start
symbol S is used. S is usually a non-terminal in the finite set of non-terminals N

(S ∈ N ). Terminals are defined in the finite set of terminals T (T ∩ N = ∅).
During decoding, each non-terminal is substituted by terminals, non-terminals, or
by sequences combining both. A finite set of production rules P defines how non-
terminals can be substituted during decoding: For every non-terminal n (n ∈ N ), one
production rule pn (pn ∈ P ) exists, which specifies the set of possible substitutions
In (|In| > 0 for each pn). A substitution i (i ∈ In) can be a terminal, a non-terminal
or a function. In GE, functions can be defined by combining terminals and non-
terminals in the form of a sequence (unlike GP, in GE no function set exists). If
only one substitution i is defined in pn (|In| = 1), n is always replaced by i during
decoding without using codons from the genotype. If more than one sequence of
symbols exists in pn (|In| > 1), a decision is made by taking the modulo of the
codons (integer) value and the number of possible decisions for n (given by |In|).
The resulting number denotes the substitution j (j ∈ In), with which n will be
replaced.

Figure 1 shows an example of the production rules of a grammar in BNF. The
grammar has the start symbol “< expr >”, which is also the single non-terminal
n (|N | = 1). The grammar uses one production rule pn (|P | = 1) that maps the
non-terminal to one of two choices (|In| = 2): Either the non-terminal is replaced
by a terminal symbol (“X”), or it is replaced by a sequence of symbols consisting

<start> ::= <expr>
<expr> ::= <expr> + <expr> | X

Fig. 1 Example of the production rules of a grammar in BNF
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of a terminal (the operator “+”) and two non-terminals (“< expr >”), representing
a function in this case (“< expr > + < expr >”). The two possible choices are
separated by “|” in the grammar.

Harper [3] introduced the notion of grammars being “balanced” or “explosive”.
He built upon previous work for GP by Luke [6], who found how the average size
of a tree depends on the average branching factor Bavg of the functions in the GP
function set. For GE, we define Bavg as the expected number of non-terminals in
one decoding step. Unfortunately, it can be difficult to calculate Bavg for complex
GE grammars since it depends on interdependencies between the decoding steps of
multiple production rules in the grammar.

In the following paragraphs, we will focus on grammars with a single production
rule (|P | = 1). This is only a minor limitation since more complex grammars with
multiple non-terminals and production rules can lead to structurally identical trees
like a grammar with a single production rule. This is the case if the number of
substitutions per production rule as well as the arities between the two grammars
match. In this case, the number of production rules could also differ and the resulting
trees would only differ in the semantics of their nodes—not in their structures (size,
depth and shape of the trees would be identical).

For a grammar with only one production rule (|P | = 1), the average branching
factor is calculated as

Bavg =
∑

i∈Ip

p(i)× B(i) , (1)

where Ip denotes the set of possible substitutions for the single production rule p

(p ∈ P ) and p(i) is the probability of choosing the substitution i. Furthermore, B(i)

is the branching factor of substitution i and denotes the number of non-terminals
in i.

We will provide an example that uses the grammar defined in Fig. 1, which
consists of only one production rule. To calculate Bavg, we need to know the
probabilities for every substitution, which depend on the codon length. We assume
a codon length of one (1 bit) and standard uniform-random bit assignment of
genotypes. Thus, both possible substitutions are selected with an equal probability
of 50% (Eq. (2a)). Because the function in the production rule includes two non-
terminals, its branching factor is two (Eq. (2b)). For the terminal “X”, the branching
factor is zero (Eq. (2c)). Therefore, the average branching factor of the grammar is
one (Eq. (2d)).

p(< expr > + < expr >) = p(X) = 50% (2a)

B(< expr > + < expr >) = 2 (2b)

B(X) = 0 (2c)

Bavg = (50%× 2)+ (50%× 0) = 100% = 1 (2d)
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Bavg allows us to distinguish between different forms of grammars based on their
expected phenotype tree size. Luke [6] found that the expected number of nodes Ed

at depth d (d ≥ 0) in a tree can be calculated as

Ed =
⎧
⎨

⎩

1 if d = 0

Ed−1 × Bavg if d > 0
(3)

The expected size Etree of a tree is calculated as the sum of Ed over all depths d

in the tree, Etree = ∑∞
d=0 Ed . We can rewrite this expression [6] as

Etree =
∞∑

d=0

(Bavg)
d . (4)

As this is a geometric series, the expected size of a tree with average branching
factor Bavg > 0 is

Etree =
∞∑

d=0

(Bavg)
d =

⎧
⎨

⎩

1
1−Bavg

if Bavg < 1

∞ if Bavg ≥ 1
(5)

If Bavg < 1, the encoded phenotype trees are finite with an expected size of
1

1−Bavg
(under the assumptions that the genotype string is long enough to finish

decoding and that the bit assignment of the codons in the genotype is uniform-
random). Consequently, we denote grammars with Bavg < 1 as “collapsing
grammars”. In collapsing grammars, the probability to finish decoding is one (if
the genotype is long enough). If the average branching factor of a grammar is only
slightly lower than one (Bavg � 1), the expected size of a tree Etree becomes very
large, which can lead to huge trees (for Bavg → 1, Etree goes towards ∞ ). For a
lower Bavg, the expected size Etree of the trees gets lower fast, which often leads to
unreasonably small trees (for Bavg → 0, Etree goes towards 1).

If Bavg ≥ 1, the expected tree size Etree is infinite, as the geometric series
tends to infinity [6]. Thus, we denote a grammar to be “balanced” if the average
branching factor Bavg = 1 [3, 6]. For balanced grammars, the expected number of
non-terminals in each decoding step is equal to one.

If Bavg > 1, we follow the notion of Harper [3] and denote the grammar to
be “explosive”. For such grammars, non-terminal expansions are more likely to be
chosen during decoding when deciding between terminals and non-terminals [3].
Thus, the decoding process substitutes non-terminals by other non-terminals with
a higher probability than terminals. Consequently, the decoding process often does
not finish since the probability of finishing the decoding tends to zero after a certain
number of non-terminals have been chosen [3, 6]. Furthermore, like in balanced
grammars, the expected tree size Etree is infinite.
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Luke notes that for GP it can be hard to define a combination of terminals and
functions that results in a finite (and reasonable) tree size. Even small changes in
the function and terminal sets can lead to either very small or infinite expected tree
sizes [6]. The same holds true for GE, as small changes in the grammar can have a
large impact on tree size. For most grammars, the phenotype trees are expected to
be either very small or invalid.

4 Experimental Setup

We studied how the non-uniform redundancy of GE encodings depends on the used
grammar. For all of our experiments, we used the same non-terminal set N , which
consists of only a single non-terminal “< expr >”. “< expr >” is also used as start
symbol S. The terminal set T consists of two terminals: The terminal “X” represents
a leaf in a phenotype tree and the terminal “join” is a function of arity k—it joins k

different parameters. In our experiments, the join functions differ by their arity but
not by their semantics. In a valid tree, the join function represents an internal node.

In our experiments, we changed the number and type of substitutions in the
production rules of the grammars. The grammars were defined in BNF. All rule
sets P consisted of a single production rule with different substitutions of the non-
terminal “< expr >”. We define different grammars which are either balanced
(denoted as “Bal”), explosive (denoted as “Exp”), or collapsing (denoted as “Col”).
An additional subscript indicates the arity of the function used in the grammar. For
example, Bal2 is a balanced grammar (Bavg = 1) with a binary join function of arity
two (k = 2).

In our study, the number of codons was set to 10. Each codon consists of two
bits, and we use no wrapping operator. Thus, the number of different genotypes
is 220 = 1,048,576. Using more than two bits would only lead to a stronger
degeneracy of the genetic code, and wouldn’t change the types nor frequencies of
encoded phenotypes. For our experiments, we created all possible genotypes and
decoded them into the corresponding phenotype trees using standard depth-first
mapping. For each phenotype tree, we determined the depth d, the tree size n (sum
of all tree nodes) and the individual shape of a tree.

5 Results and Analysis

We studied how the non-uniform redundancy of the representation depends on
various types of GE grammars. We examined grammars with binary join functions
(“binary grammars”, arity k = 2), unary join functions (“unary grammars”, k = 1),
trinary join functions (“trinary grammars”, k = 3), and join functions with different
arities (“mixed arity grammars”, k ∈ {1, 2, 3}).
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5.1 Binary Grammars

In this section, we will extend previous findings [18] on non-uniform redundancy
by analysing one balanced grammar Bal2 (Fig. 2), one explosive grammar Exp2
(Fig. 3), and one collapsing grammar Col2 (Fig. 4).

The production rule of the balanced grammar Bal2 defines four possible
substitutions for the single non-terminal “< expr >”. Two of them are the terminal
“X” and the other two are binary join functions. The grammar’s average branching
factor is Bavg = 1, resulting in an expected average tree size of Etree = ∞.

Grammar Exp2 (Fig. 3) defines one production rule, which substitutes a non-
terminal in either one out of three binary join functions or one terminal node “X”.
Since Bavg = 1.5, the expected average tree size Etree is also infinity.

Grammar Col2 (Fig. 4) also defines one production rule, which substitutes a
non-terminal in either one binary join function or one of three terminals “X”. The
grammar’s average branching factor is Bavg = 0.5 and the expected tree size is
Etree = 2 (assuming enough codons to finish decoding).

We analysed the encoded phenotype trees for the three different grammars.
Figure 5 plots the different phenotype trees over their depth d and size n. Valid
trees were plotted using a circle, invalid ones using a cross. The dotted lines
depict boundaries for valid binary trees. We do not show plots for the different
grammars, as all grammars produced the same phenotype trees. With a genotype
of 10 codons, all three grammars mapped the genotypes to the same seven valid
and seven invalid phenotype structures. The maximum size of the valid trees was
nine and the maximum depth is four. All invalid trees, which were the result of an
unfinished decoding process, have the maximum number of ten nodes.

To analyse whether the representation is non-uniformly redundant, we examine
the frequencies of the phenotype tree structures (that is, the number of genotypes
that encode trees with the same size and depth divided by the number of all
genotypes). Figure 6a–c shows the resulting frequencies of the phenotypes over
their depth and size for the three grammars.

Fig. 2 Production rules of
grammar Bal2 (Bavg = 1.0)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr>)

| join(<expr> ; <expr>)
| X | X

Fig. 3 Production rules of
grammar Exp2 (Bavg = 1.5)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr>)

| join(<expr> ; <expr>)
| join(<expr> ; <expr>)
| X

Fig. 4 Production rules of
grammar Col2 (Bavg = 0.5)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr>)

| X | X | X



64 D. Schweim et al.

Fig. 5 Encoded trees over
different sizes and depths
(circle for valid, cross for
invalid trees; results are
identical for grammars Bal2,
Exp2, and Col2)
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As expected, the frequency of invalid trees increases with Bavg. For Col2 (Bavg =
0.5) it is relatively low (1.89%), for Bal2 (Bavg = 1) about one fourth of the
genotypes encode invalid trees (24.61%), and for Exp2 (Bavg = 2) almost two thirds
of all encoded trees are invalid (67.30%). We found that the GE decoding process
creates some tree structures (defined by their size and depth) with much higher
frequencies. For all three grammars, a large percentage of the encoded phenotypes
consists of only a single terminal. These trees have a size of one and a depth of zero.
For Bal2, their ratio is 50% (Fig. 6a), for Exp2 it is 25% (Fig. 6b), and for Col2 it
is 75% (Fig. 6c). This means for the three considered grammars that between 25%
and 75% of all genotypes encode a phenotype tree with one node (“X”). All other
phenotypes are encoded with much lower frequencies. Thus, the representation is
strongly non-uniform redundant for all three grammars. Looking at large but still
valid trees, the frequency of trees with a tree size n > 3 is highest for grammar Bal2.
The other two grammars map the genotypes to valid and large trees with lower
frequency, as Col2 has a strong bias towards very short trees of size one or three
(Etree = 2) and Exp2 often does not allow the decoding process to be finished
(Etree = ∞), leading to a large proportion of invalid trees. This explains why most
grammars used in the literature have an average branching factor of Bavg ≈ 1.

Until now, we characterised trees only by their size and depth. However, in many
applications the position of nodes in the tree can be important. Thus, in the following
paragraphs, we study how many genotypes encode one particular tree. For the three
grammars and a codon size of 10, we observe 23 different valid trees and 252
different invalid trees. Figure 7 plots the frequencies over the 23 valid trees. From
left to right, the frequencies are in decreasing order. We added additional labels for
each tree, indicating the size n and depth d of the corresponding tree.

As before, the representation is strongly non-uniform redundant. About one
million different genotypes encode only 23 valid trees. For Bal2 (Fig. 7a), the tree
with a size of one and depth of zero is encoded by 50% of all genotypes; the full tree
of depth one and size three is encoded by 12.5% of all genotypes. The remaining
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Fig. 6 Frequencies of (valid and invalid) trees over sizes and depths (grammars Bal2 (a), Exp2
(b) and Col2 (c))

21 valid phenotype trees are encoded with an overall frequency of only 12.89%,
ranging from about 0.2% to 3.13%. For Exp2 (Fig. 7b), valid trees with n > 3 are
encoded with frequencies between 0.03% and 0.88%. For Col2 (Fig. 7c), trees with
n > 3 are encoded with frequencies ranging from 0.09% to 2.64%.

With 252 invalid trees, there are about ten times more invalid trees than valid
trees. The frequencies of invalid trees increase with Bavg. For Col2, all frequencies
of invalid trees are below 0.0232%, for Bal2, each invalid tree is encoded with
a frequency of about 0.098%, and for Exp2, the frequencies of invalid trees are
between 0.02% and 5.63%.

In summary, the GE encoding is strongly non-uniform redundant, independently
of the used grammar. All studied binary grammars map genotypes to the same
phenotype trees, but the frequencies of encoding a particular tree vary considerably
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Fig. 7 Frequencies of valid
trees (grammars Bal2 (a),
Exp2 (b) and Col2 (c))
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across the grammars. We observe a strong over-representation of short valid trees
when using the collapsing grammar Col2; with higher Bavg, the bias towards short
trees gets lower, however, the percentage of invalid phenotypes strongly increases.
For most real-world applications, a branching factor Bavg ≈ 1 is a reasonable choice
as it is a compromise between the two observed types of biases.

5.2 Unary Grammars

We studied the non-uniform redundancy of GE representations for grammars using
only functions with arity one (“unary”, k = 1). For unary grammars, balanced or
explosive grammars can’t be defined. Thus, unary grammars are always collapsing
grammars. For our analysis, we used the grammar “Col1”, which substitutes a non-
terminal with either one of two unary join functions or two terminals (Fig. 8). Thus,
Bavg = 0.5 and Etree = 2 (which are the same properties as Col2).

As before, we examined the number of genotypes that encode trees characterised
by n and d. Figure 9 plots the encoded phenotype trees over their depth and size.
There were ten valid trees between n = 1 (d = 0) and n = 10 (d = 9) and only
one type of invalid tree with n = 10 (d = 9). The invalid trees are the result of the
limited number of genotype codons which lead to an unfinished decoding.

We examined whether the frequencies of tree structures (number of genotypes
that encode a particular tree structure characterised by n and d divided by the
number of all possible genotypes) are non-uniformly distributed. Figure 10 plots
the frequencies for the valid and invalid trees over their depth and size. Analogously

Fig. 8 Production rules of
grammar Col1 (Bavg = 0.5)

<start> ::= <expr>
<expr> ::= join(<expr>)

| join(<expr>)
| X | X

Fig. 9 Encoded trees over
different sizes and depths
(circle for valid, cross for
invalid trees; grammar Col1)
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Fig. 10 Frequencies of (valid
and invalid) trees over sizes
and depths (grammar Col1)
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Fig. 11 Frequencies of valid
trees (grammar Col1)
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to binary grammars, there are large differences in the number of encoded trees.
Short trees are strongly over-represented and the decoding process finishes for most
genotypes (the frequency of invalid trees is only 0.1%). We find that both collapsing
grammars (Col2 as well as Col1) have a low frequency of invalid trees and a strong
bias to short trees (compare Figs. 6c and 10).

We also analysed the frequencies of valid trees in greater detail. Figure 11 plots
the frequencies over the ten valid trees in decreasing order. We found that the
frequency of a tree decreases with higher size.

In summary, unary grammars also result in a strongly non-uniform encoding,
as short trees are strongly over-represented. The bias is comparable to the bias
observed in the collapsing binary grammar Col2, as also almost no genotypes are
mapped to invalid trees due to the low average branching factor.
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5.3 Trinary Grammars

We studied the non-uniform redundancy of GE representations using grammars
with arity three functions. We define two different grammars: Exp3 (Fig. 12) with
a production rule that substitutes the non-terminal by either one of three arity three
join functions or one terminal, and Col3 (Fig. 13) which substitutes the non-terminal
with either one arity three join function or one of three terminals. The average
branching factor of Exp3 is Bavg = 2.25; for Col3 it is Bavg = 0.75.

Figure 14 plots the encoded phenotype trees over their depth and size. Both
example grammars map the genotypes to the same five different valid trees and
eight different invalid trees (trees are characterised by their size and depth). The
lower number of different valid tree structures of five (in comparison to seven in
binary grammars) is a result of the high branching factor of the trinary function: It
requires that once a function is selected, at least three more non-terminals have to
be decoded (compared to only two more non-terminals in a binary function). Thus,
if one trinary function is chosen, at least three more codons are needed to finish the
decoding for this subtree.

Figure 15a, b plots the frequencies of all trees over their depth and size. Again,
the frequencies are strongly non-uniform and the encoding is strongly biased
towards short trees. There are only three valid tree types (characterised by n and

Fig. 12 Production rules of
grammar Exp3 (Bavg = 2.25)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr> ; <expr>)

| join(<expr> ; <expr> ; <expr>)
| join(<expr> ; <expr> ; <expr>)
| X

Fig. 13 Production rules of
grammar Col3 (Bavg = 0.75)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr> ; <expr>)

| X | X | X

Fig. 14 Encoded trees over
different sizes and depths
(circle for valid, cross for
invalid trees; grammars Exp3
and Col3)
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Fig. 15 Frequencies of (valid and invalid) trees over sizes and depths (grammars Exp3 (a) and
Col3 (b))
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Fig. 16 Frequencies of valid trees (grammars Exp3 (a) and Col3 (b))

d) with a size smaller than ten (there are two valid tree structures with n = 10). For
the two grammars, the differences in the frequencies are large. For Exp3, 73.6% of
the phenotypes are invalid, compared to only 7.5% for Col3.

Furthermore, we studied the frequencies of valid trees, considering the exact
position of nodes in a tree. We plotted the valid trees over their frequency in
decreasing order from left to right (Fig. 16a, b). Both grammars map the genotypes
to the same 17 different valid trees, however the tree frequencies strongly differ
between the grammars. For Exp3, the overall frequency of valid trees with n > 1
is only 1.37%, compared to 17.5% for grammar Col3. This is a result of the lower
Bavg of Col3, which leads to a stronger bias towards short (and valid) trees.
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In summary, the results for trinary grammars are similar to the results presented
for unary and binary grammars: With increasing Bavg, the bias towards short trees
decreases and the percentage of invalid trees increases.

5.4 Mixed Arity Grammars

Finally, we studied grammars containing functions with different arities between
one and three. The production rule in grammar Bal1,2 (Fig. 17) substitutes the non-
terminal with either one of two unary join functions, one binary join function or
one terminal. Grammar Bal1,3 (Fig. 18) uses one unary join function, one trinary
join function, and two terminals (“X”). The production rule in grammar Exp1,2
(Fig. 19) substitutes the non-terminal with either one of two binary join functions,
one unary join function, or one terminal. Grammar Exp1,3 (Fig. 20) substitutes the
non-terminal with either one of two unary functions, a trinary function, or one

Fig. 17 Production rules of
grammar Bal1,2 (Bavg = 1.0)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr>)

| join(<expr>)
| join(<expr>)
| X

Fig. 18 Production rules of
grammar Bal1,3 (Bavg = 1.0)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr> ; <expr>)

| join(<expr>)
| X | X

Fig. 19 Production rules of
grammar Exp1,2
(Bavg = 1.25)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr>)

| join(<expr> ; <expr>)
| join(<expr>)
| X

Fig. 20 Production rules of
grammar Exp1,3
(Bavg = 1.25)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr> ; <expr>)

| join(<expr>)
| join(<expr>)
| X

Fig. 21 Production rules of
grammar Exp1,2,3
(Bavg =1.5)

<start> ::= <expr>
<expr> ::= join(<expr> ; <expr> ; <expr>)

| join(<expr> ; <expr>)
| join(<expr>)
| X
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Fig. 22 Encoded trees over different sizes and depths (circle for valid, cross for invalid trees;
grammars Bal1,2, Bal1,3, Exp1,2, Exp1,3, and Exp1,2,3). (a) Grammars Bal1,2 and Exp1,2. (b)
Grammars Bal1,3 and Exp1,3. (c) Grammars Exp1,2,3

terminal. Grammar Exp1,2,3 (Fig. 21) combines all possibilities and substitutes a
non-terminal by either a terminal, a unary, a binary, or a trinary join function.

Figure 22 plots the encoded phenotype trees characterised by their depth and size.
We found that all grammars map the genotypes to a wide variety of phenotype trees,
since they can create many different types of structures due to multiple function
arities used in the grammars. Grammar Exp1,2,3 contains the highest number of
functions with different arities, allowing us to construct 40 valid and 8 invalid tree
structures. This is also the highest number of different resulting tree structures we
observed (Fig. 22c). Grammars Bal1,2 and Exp1,2 map the genotypes to the same
36 valid and 7 invalid tree structures (Fig. 22a). Grammars Bal1,3 and Exp1,3 map
the genotypes to the same 32 valid and 8 invalid tree structures (Fig. 22b).

Again, we examine the frequencies of the trees characterised by their size and
depth. Figure 23 plots the fractions of valid and invalid trees over their depth and
size. Analogously to the previous results, short trees are strongly over-represented.
With a higher average branching factor, the number of invalid trees increases and
the bias towards short trees decreases.



On the Non-uniform Redundancy of Representations for GE 73

Tree Depth

0
2

4
6

8

T
re

e 
S

iz
e

2

4

6

8

10

F
requency

0.00

0.05

0.10

0.15

0.20

0.25

(a)

Tree Depth

0
2

4
6

8

T
re

e 
S

iz
e

2

4

6

8

10

F
requency

0.00

0.05

0.10

0.15

0.20

0.25

(c)

Tree Depth

0
2

4
6

8

T
re

e 
S

iz
e

2

4

6

8

10

F
requency

0.0

0.1

0.2

0.3

0.4

0.5

(b)

Tree Depth

0
2

4
6

8

T
re

e 
S

iz
e

2

4

6

8

10

F
requency

0.00

0.05

0.10

0.15

0.20

0.25

(d)

Tree Depth

0
2

4
6

8

T
re

e 
S

iz
e

2

4

6

8

10

F
requency

0.00

0.05

0.10

0.15

0.20

0.25

(e)

Fig. 23 Frequencies of (valid and invalid) trees over sizes and depths (grammars Bal1,2 (a),
Bal1,3 (b), Exp1,2 (c), Exp1,3 (d), and Exp1,2,3 (e))
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Fig. 24 Frequencies of valid trees (grammars Bal1,2 (a), Bal1,3 (b), Exp1,2 (c), Exp1,3 (d), and
Exp1,2,3 (e))
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Figure 24 plots the frequencies of valid trees over their depth and size in
decreasing order from left to right. Due to the high number of different trees, we
left out tree depths and sizes. In general, the number of different trees is high.
Grammars Bal1,3 and Exp1,3 map the genotypes to 592 valid trees and 125,121
invalid trees. Grammars Bal1,2 and Exp1,2 map the genotypes to 1374 valid and
17,303 invalid trees. Grammar Exp1,2,3 maps the genotypes to the highest number
of different trees (4315 valid and 626,859 invalid).

6 Conclusions

In this paper, we studied how different types of grammars affect the non-uniform
redundancy of GE. After a brief overview of recent work on the bias of GE
representations and grammars in GE, we illustrated how the expected tree size
Etree of a phenotype tree depends on the average branching factor Bavg, which is
determined by the used BNF grammar. In GE, grammars define production rules
which describe how non-terminals are substituted by either functions of various
arities k or terminal nodes. The average branching factor Bavg sums up the branching
factor of each substitution, which is the number of non-terminals of the substitution,
multiplied by the probability of choosing the particular substitution.

We distinguished between collapsing grammars (Bavg < 1), balanced grammars
(Bavg = 1), and explosive grammars (Bavg > 1). For collapsing grammars, the
expected size Etree of the encoded phenotype tree is finite, whereas for balanced and
explosive grammars Etree → ∞. For Bavg → 0, the expected phenotype tree size
becomes 1. With increasing Bavg, this strong bias towards short trees gets lower,
however, the number of GE genotypes that encode an invalid tree increases. For
practical GE applications, the average branching factor should be Bavg ≈ 1, as
otherwise large phenotype trees could hardly be encoded. The experimental study
presented in Sect. 5 supports this finding for a variety of different grammars.

Table 1 summarises some of these findings. For each grammar, we listed the
average branching factor Bavg, the number of different valid |Φvalid

p | and invalid
|Φinvalid

p | phenotype trees, the percentage |Φvalid
p | / |Φp| of valid trees over all

trees, and the percentage f valid
p of genotypes that encode a valid phenotype.

For all results, the genotypes had 10 codons and we did not use wrapping. The
results confirmed previous findings that GE representations are strongly redundant,
as the number of genotypes (220 ≈ 1.05 × 106) strongly exceeds the number
of phenotypes. The numbers of valid phenotypes are between 10 and 4315; the
numbers of invalid phenotypes range from 1 to 626,859.

Also, we found that the representation is non-uniformly redundant. The mapping
has a large bias towards short trees. This bias gets stronger with lower Bavg.
For example, when using a balanced grammar with Bavg = 1 (Bal2), 50% of
the genotypes encode a phenotype tree of size 1. For a collapsing grammar with
Bavg = 0.5 (Col2), the bias is stronger since 75% of all genotypes encode a tree of
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Table 1 Properties of GE representations for various explosive, balanced, and collapsing gram-
mars

Grammar name Bavg |Φvalid
p | |Φinvalid

p | |Φvalid
p | / |Φp| f valid

p

Exp3 2.25 17 412 3.96% 26.37%

Exp2 1.50 23 252 8.36% 32.70%

Exp1,2,3 1.50 4315 626,859 0.68% 40.22%

Exp1,2 1.25 1374 17,303 7.36% 45.66%

Exp1,3 1.25 592 25,121 2.30% 55.53%

Bal1,2 1.00 1374 17,303 7.36% 66.36%

Bal2 1.00 23 252 8.36% 75.39%

Bal1,3 1.00 592 25,121 2.30% 80.06%

Col3 0.75 17 412 3.96% 92.50%

Col2 0.50 23 252 8.36% 98.11%

Col1 0.50 10 1 90.91% 99.90%

size one. For balanced and explosive grammars (Bavg ≥ 1), Etree is infinite, resulting
in a bias towards invalid trees. For example, for the explosive grammar Exp3, we
found that around 75% of all genotypes encode invalid trees (Table 1, results are for
a codon length of 10 and no wrapping).

The results can help practitioners choose the right grammar when applying GE
to problems of practical relevance. If too many of the genotypes encode invalid
phenotypes or the encoded trees are too large, we recommend reducing the average
branching factor. This can be done for example by adding more terminals to a
grammar, reducing the number of functions, or reducing the arity of the functions.
In general, we recommend that Bavg ≈ 1. If Bavg is too small (0 ≥ Bavg � 1),
then the bias towards short trees is too strong and the percentage of genotypes
that encode larger trees is too low. We believe that proper values of Bavg depend
on the problem instance, as larger branching factors reduce the bias towards small
trees and encode larger tree structures more often. The question of how a change
on the average branching factor (by adapting the grammar) might affect search
performance remains open and should be answered by future studies.
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Mapping in Grammatical Evolution

David Fagan and Eoin Murphy

Abstract The act of going from genotype to phenotype in Grammatical Evolution
requires the application of a mapping process. This mapping process works in
conjunction with a grammar, to transform an ordinary string of integers into a
possible solution to a problem. In this chapter, the reader is exposed to the rich
vein of research exploring mappings in Grammatical Evolution. A comprehensive
survey of the field of Mapping in GE is presented before the chapter focuses on the
main theme, Position Independent Mappings. Firstly πGE is presented outlining
some of the benefits of the approach, before the reader is presented with a position
independent mapping that utilises advances in mappings and grammars to present a
very powerful variant of GE, TAGE. The chapter concludes by briefly exploring a
highly complex developmental variant of the TAGE mapping.

1 Introduction

Grammatical Evolution (GE) uses Neo-Darwinian principles of evolution to evolve
automatically generated solutions to problems. GE is commonly referred to as a
grammar-based form of Genetic Programming (GP) [31]. However, this description
can prove over-simplistic [4] once the inner workings of GE are examined. Genetic
Algorithms (GA) [15] and Genetic Programming (GP) [28] are two of the most
popular forms of EC. A GA uses a population of bit string individuals and evolves
this population of strings until the desired solution is found. The bit strings of a
GA can represent a multitude of solutions depending on the encoding used. GP,
on the other hand, uses a population of parse tree individuals. At their core, both
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algorithms share similar workings. GE [43] takes inspiration from both these classic
EC algorithms, while also harnessing the added power of grammars.

Whereas GP has a one-to-one mapping between parse tree and solution (although
it could be argued that the genotype and phenotype are essentially the same thing
in canonical GP), GE gains a many-to-one mapping by adopting the genotype-
phenotype map. In this many-to-one mapping, many chromosomes will map to the
same program. The usage of grammars in GE allows for the evolution of problems in
a domain representable by a grammar, unlike canonical GP and its implicit grammar,
where limitations such as the closure property have to be dealt with.

The mapping process in GE, which is a simple abstraction of the expression of
DNA, is the conversion of a chromosome (genotype) to a solution (phenotype). In
canonical GE this is done by taking a chromosome and a BNF context-free grammar
and using the mod rule (Eq. (1)) a derivation tree is constructed. From this derivation
tree, the solution can be extracted for evaluation.

New Node = Codon value % Number of rules f or Non T erminal (1)

There has been much debate recently [48, 49] as to the merits of the usage of
a genotype to phenotype mapping in GE. One side argues for the removal of such
mappings, while others, such as O’Neill and Nicolau [41], point towards the large
amount of inspiration that can be taken from nature and its mapping processes, and
their potential benefits to the GE representation. The issue of good representations
is also of importance to the wider EC/GP community [31]. This chapter presents
several approaches to exploring and enhancing the GE mapping process. While
the approaches have not gained widespread usage within the GE community, this
chapter moves to rectify this by providing researchers with an overview of some of
these advances, before focusing in-depth at the position independent vein of GPM
research.

Much work has been done to date with regards to the mapping process in
GE. Some of the earliest work focused on a replacement for the mod rule. The
bucket rule [25] looked to remove inherent biases in the traditional mod rule. This
approach did not gain widespread use and many of the advantages of the method
can be achieved by simply using a balanced and well-designed grammar. Another
interesting vein of research that was carried out looked to enhance the mapping of
GE, by exploring other factors that impact the successful mapping of individuals.
Nicolau et al. [39] performed an in-depth investigation into termination in GE,
noting a link between poor grammar design and termination issues in GE, and also
the benefits of tail usage.

Several variants of GE have also come to be over the years since the first
introduction of GE. These variants all use unique approaches to the genotype-
phenotype mapping process. Chorus [2] is a position independent encoding system
for grammar-based EA’s. In Chorus the reading of codons from the chromosome
is subject to positional change. Chorus uses a modified mod rule, where every
production choice is considered, unlike GE where only the relevant production
choices are considered. The modified mod rule, in conjunction with a concentration
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table, is used to construct derivation trees. The derivation is performed in a depth-
first manner, similar to GE, using the concentration table to jump around the
chromosome selecting codons as needed. The concentration table allows for Chorus
to not leave any unused genetic introns in the chromosome that would occur if
using the modified mod rule exclusively. Genetic Algorithms using Grammatical
Evolution (GAuGE) [5] uses GE and attribute grammars to evolve what each gene
positions in the GA codes for. The system features position independent genetic
algorithms and uses the mod operation on codon values allowing for redundant
coding, to mention but a few features. Recently we have seen the introduction of
Structured Grammatical Evolution [30] to the field. SGE adapts the grammar and
mapping process to provide GE with a more structured representation that allows
for increased locality and reduces the ripple effect of traditional GE.

The chapter that follows first explores Position Independent Mapping in Sect. 2.
This is then followed by an overview of a more complex mapping process, Tree
Adjunct Grammatical Evolution, in Sect. 3. Finally, the chapter concludes with a
summary in Sect. 4.

2 πGE: Position Independent Mapping in GE

πGE first proposed by O’Neill et al. [42] looks to enhance the GE GPM by
removing the linear dependency of the genome in the traditional mapping process
by giving control of the order of derivation to evolutionary search. The following
section first presents the idea of position independent mapping, before examining
the inner workings of the approach and highlighting desirable features. This work
draws heavily from [8] and the associated publications that made up that volume of
research [9–14].

2.1 Position Independent Mapping

The πGE GPM differs from the traditional GE mapping in one way. While the
expansion of the NTs is performed identically in both approaches the order in which
these expansions take place is different. GE adopts a fixed order mapping, while
πGE uses evolution to control the order of NT expansions.

Before any mapping can be done in πGE, there are some changes that need to
be made to the chromosome. πGE’s mapping process differs from that of GE in
that each expansion of a NT requires two codons. The standard GE chromosome is
essentially split into a chromosome of pair values. The first codon of the pair (The
Order Codon), is used to choose which NT to expand and the second (The Content
Codon), is used to choose what the production, based on the rules available for a
NT of that type, just like in GE. The chromosome shown in Fig. 1 can be viewed as
a list of paired values such as ((2,12),(7,9). . . ).
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<e> ::= <e> <o> <e> | <v>
<o> ::= + | -
<v> ::= X | Y

Chromosome = 2,12,7,9,3,15,23,1,11,4,6,13,2,7,8,3,35,19,2,6

Fig. 1 An example grammar and chromosome

2.1.1 πGE Mapping Example

The mapping process begins from the embryonic start symbol of the grammar.
Taking the simple grammar provided in Fig. 1 this is < e >. < e > is then added
to the list of possible expansions, [< e >]. Selecting the first πGE codon from the
chromosome (Fig. 1) yields the codon (2, 12). The order codon, 2 is then passed to
Eq. (2), that results in selecting the NT to be expanded from the NT list, [(< e >)]
as 2%1 = 0. Now for the second half of the πGE expansion we have to perform
the standard GE expansion on the selected NT. In this case there are two possible
transformations which can be applied to < e >. Either it will be replaced with
< e >< o >< e >0 or with < v >1. To decide what rule is taken, the content
codon 12 and the number of choices available are used in conjunction with Eq. (3).
In this case 12%2 = 0 so < e > will be transformed into < e >< o >< e >, and
the NT list will be updated, [< e >,< o >,< e >].

NT to expand = Order Codon % |NT list | (2)

Expansion Choice = Content Codon % Number of rules f or NT (3)

The second expansion of the πGE derivation tree follows a similar process, first
the next πGE codon is read, (7, 9). The order codon of the pair is used to select the
next NT to expand, < o > is chosen as 7%3 = 1. Next the content codon is used to
select what the expansion becomes. Similarly to the first expansion < o > has two
possible productions, +0 or −1, and − is chosen in this case as 9%2 = 1. As − is a
terminal it is not added to the NT list and so the list now consists of [< e >,< e >].
When a NT production results in the generation of new NTs, these NTs are placed
at the same location in the NT list of possible expansions, that the initial NT was
selected from.

This expansion process is repeated until the tree is completed or the derivation
process reaches the end of the chromosome. If all the codons have been used the
mapper will either return an invalid individual or else wrap around to the start of the
chromosome and continues mapping (if wrapping is enabled). Figure 2 provides
the complete derivation example, with Fig. 2a showing the NT list at each step
of the derivation, and Fig. 2b showing the completed derivation tree. The number
associated with each branch of the tree is a reference to the numbered steps shown
in Fig. 2a, which show how each choice of NT to expand comes about. A pseudo-
code outline of the πGE mapping process is also shown in Algorithm 1.
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1.   [(e)]  => 2%1=0
2.   [e,(o),e]  => 7%3=1
3.   [e,(e)]  => 3%2=1
4.   [e,(v)]  => 23%2=1
5.   [(e)]  => 11%1=0
6.   [(e),o,e]  => 6%3=0
7.   [v,o,(e)]  => 2%3=2
8.   [v,o,(v)]  => 8%3=2
9.   [v,(o)]  => 35%2=1
10.  [(v)]  => 2%1=0

<e>

<e> <o> <e>

 1 (12%2=0) 

<e> <o> <e>

 5 (4%2=0) 

<v>

 3 (15%2=1) 

-

 2 (9%2=1) 

<v>

 6 (13%2=1) 

<v>

 7 (7%2=1) 

-

 9 (19%2=1) 

X

 10 (6%2=0) 

Y

 8 (3%2=1) 

Y

 4 (1%2=1) 

(a) (b)

Fig. 2 Example of the πGE mapping process. The derivation tree is expanded in the order that is
dictated by the chromosome and Eq. (2). This process is outlined in (a). In this figure the expansion
order is indicated on the arrowed edges between the tree nodes. 5(4%2 = 0), indicates that this
was the fifth expansion in the mapping and that 4%2 = 0 dictates what the fifth expansion will
entail. (a) πGE order choice list. (b) πGE derivation tree example

Algorithm 1: πGE Genotype-Phenotype Map Algorithm. The addition of
the order codons are highlighted. It can now be seen how the order codons
are used to pick an index in the NT list. It is also worth noting how the new
productions are then added to the index where the parent NT was taken from
originally, this preserves the ordering of the derivation string

listNT {List to store NT’s seen}
Add start symbol from grammar to listNT

wraps = 0
while listNT is not empty do

if reached end of chromosome then
wraps++
if wraps > max wraps allowed then

return false
reset chromosome iterator

{This is where the πGE order comes in}
currentOrderCodon = get next codon value
nextP roductionIndex = currentOrderCodon % size of listNT

currentNT = get listNT [nextP roductionIndex]
currentContentCodon = get next codon value
newProduction = currentCodon % number of productions f or currentNT

set currentNT ′s children = newProduction

{The new NT’s are added where the parent NT was removed from}
insert newProduction at listNT [nextP roductionIndex] {Only adds NTs}

Generate Phenotype by traversing the leaf nodes of the derivation tree.
return true
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Possible Genotypes for GE using a Binary Grammar

.....

0.... 1....

At the 1st codon, there are 2 possible genotypes

00... 01... 10... 11...

At the 2nd codon, there are 2 possible expansions for both previous genotypes

000.. 001.. 010.. 011.. 100.. 101.. 110.. 111..

And again 2 choices for the 3rd codon resulting in 8 possible genotypes to explore

Fig. 3 This figure shows the minimum possible genotypes needed by GE, to map to every
possibility for the first 3 expansions of a grammar, consisting of the rule E ::= EE|EE. Note
that with 3 expansions 8 (23) genotypes are needed

2.2 Connectivity of Representation

πGE has been shown to be comparable and in many cases exceed the performance
of GE. The addition of the evolvable ordering of πGE increases the possible number
of genotypes to be searched substantially. How does πGE effectively search this
space without any addition in search effort. Does the addition of the evolvable order
also carry with it some benefits not available to GE’s fixed order mapping?

2.2.1 GE Versus πGE Genotypes

Consider a simple demonstration: a GE derivation tree that starts off with three
expansions. At each of these expansions, a grammar allows for two possible
expansion choices, and each choice produces two NT’s and consumes one NT,
e.g., E ::= EE|EE. This results in a branching factor (the number of possible
expansions at a tree node) at each expansion of two for GE, that leads to a
requirement of 23 genotypes that map to the trees needed to fully explore the first
three expansions, as shown in Fig. 3.

πGE for these same three expansions presents a different situation. The first
expansion has a single NT so πGE has a choice of one NT to expand. This NT
then presents two possible choices for the grammar exactly like GE. This choice
results in the consumption of one NT and the creation of two new NTs. Now for the
second expansion πGE has the choice of two NTs, and from this it will then have
two choices from the grammar for whichever NT it selected. The second expansion
consumed one NT but produced two new ones so there is now three NTs. The final
of the three expansions for πGE results in a choice between the three unexpanded
NT’s. Finally, the expansion of the NT results in a choice of two from the grammar.
To model these three expansions πGE has to cover 48 (1 ∗ 2 ∗ 2 ∗ 2 ∗ 3 ∗ 2) possible
combinations of genotypes that can generate the eight possible derivation trees, as
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Possible Genotypes for Position Independent GE using a Binary Grammar

.........

0.........

At the 1st order codon, there is 1 NT to choose from.

00........

01........

At the 1st content codon, there are 2 possible genotypes.

000......

001.......

010.......

011.......

At the 2nd order codon, there are 2 possible NTs to choose from.

0000......

0001......

0010......

0011......

0100......

0101......

0110......

0111......

At the 2nd content codon, there are 2 possible genotypes for each parent node.

00000.....

00001.....

00002.....

00010.....

00011.....

00012.....

00100.....

00101.....

00102.....

00110.....

00111.....

00112.....

01000.....

01001.....

01002.....

01010.....

01011.....

01012.....

01100.....

01101.....

01102.....

01110.....

01111.....

01112.....

At the 3rd order codon, there are now 3 possible NTs to choose from.

000000....

000001....

000010....

000011....

000020....

000021....

And again 2 choices for the 3rd content codon resulting in 48 possible genotypes to explore

011100....

011101....

011110....

011111....

011120....

011121....

Fig. 4 This figure shows the minimum number of genotypes needed by πGE to cover all possible
mapping sequences for the first 3 expansions of a grammar, consisting of the rule E := EE|EE.
Note that the grammar consumes 1 NT and produces 2 NTs to the possible locations πGE can
choose for expansion. This leads to the NT list increasing by 1 per expansion. Due to this, 48
(1 ∗ 2 ∗ 2 ∗ 2 ∗ 3 ∗ 2) genotypes are needed to model the first 3 expansions. This results in only 8
derivation trees, but πGE has 48 possible paths to these trees

demonstrated in Fig. 4. πGE has 40 more genotype combinations than GE, and if
we were to carry this on to a fourth expansion GE would have 16 (24) possible trees
that requires 16 genotypes, while πGE is facing 384 (1 ∗ 2 ∗ 2 ∗ 2 ∗ 3 ∗ 2 ∗ 4 ∗ 2)

possible genotypes to generate the same 16 trees.
Given that GE and πGE share a common grammar, the phenotypes that can

be derived from both systems are identical, given the same amount of codons,
where a πGE codon is a pair. This shared phenotypic space, called the phenotypic
landscape, allows for the direct comparison of how each respective system can
search the landscape. Modelling each algorithm’s interaction with this landscape
may shed light on how πGE can overcome the massive overhead of order search.
Koza and Poli [29] noted that understanding how an algorithm operates can be aided
by visualising the program space, i.e., the phenotype space in GE and πGE.

2.2.2 Search Landscapes

Landscapes are an idea that can be employed to aid in the understanding of complex
systems [22, 29]. Good visualisation of a landscape can facilitate the study of an
aspect of interest in the system. This visualisation may allow the user to gain an
increased understanding of the process in question, thus allowing for the deduction
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of solutions to observed behaviours in the system being examined. The doctoral
thesis of Jones [21], focused on trying to understand and define landscapes in terms
of EC methods. Jones stated:

A landscape is a metaphor by which we hope to imagine some aspect of the behaviour of
an algorithm [21].

He put forward the idea that an algorithm contains many landscapes dependent
upon the operator performing search, such as mutation, and crossover in EC. Jones
hypothesised that there was not one landscape, but rather a combination of these
individual landscapes that provides a complete model of the system [22].

The landscape model, as outlined in detail in Jones’ thesis [21], was employed
for this study. What follows is a brief description. In the model, a landscape can be
described as a five tuple (Eq. (4)).

L = (R, φ, f, F,>F ) (4)

• R denotes the representation space of the search algorithm.
• φ denotes the operator acting on the landscape.
• f a function that maps a multiset of R (M(R)) to F , the fitness space, f :

M(R) → F .
• F the fitness space
• >F represent a partial ordering over the fitness space.

The landscape L can be visualised as a labelled directed graph GL = (V ,E),
where the vertices V are a subset of M(R), V ⊆ M(R), and the edges E are a
subset of the cross product of V , E ⊆ V × V . An edge E between two vertices, v

and w, can be said to exist if and only if there is a connection between v and w via
an application of φ, (v,w) ∃E ⇐⇒ φ(v,w) > 0.

This model was further defined by Murphy et al. [36] for usage in a comparison of
grammars in GE, and a similar definition is used for this experiment. The landscapes
to be examined in this study are defined by the representation space R, that combines
the chromosome space, and a GE GPM or πGE GPM resulting in the phenotype
space. The phenotype space represents all the valid phenotypes that can be derived
from the grammar within a given chromosome length, this is the object space O.
Single int-flip mutation represents φ, and f is the GE fitness function. For this
landscape, the graph GL = (V ,E) can be viewed as having set of vertices V ,
where V ⊆ M(R) and V ⊆ O, meaning the vertices are genotypes, but also valid
phenotypes. Given that GE and πGE share the same phenotype space, V will be the
same regardless of what GPM is used. The edges between the vertices may differ,
due to how φ interacts with the representation space R. Through these differences
in E, GE and πGE will be compared.
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2.2.3 Mutate and Store

Mutate and Store (MS), originally introduced by Murphy et al. [36], and modified
to meet the requirements of this study, allows for exploration and mapping of any
grammar’s phenotypic landscape. MS maps the phenotypic landscape via single int
flip mutation events, whereby exactly one codon is mutated per mutation event.
MS requires a fixed length chromosome of all zero codons. MS then takes the
desired grammar and this initial chromosome and builds the phenotypic landscape.
MS does this by starting at the first codon and finding all the possible choices
for that codon, by checking the grammar. Once all the possible choices for
the codon are known, MS generates new genotypes for each choice and stores
them in a neighbourhood. Having stored all possible neighbours, MS evaluates
these neighbours and records what mutations resulted in chromosomes with valid
phenotypes. These valid phenotypes are then added to the population for mutation
at the next codon index. This process is repeated until all codon indices in the
genotype have been fully explored. Once this process is done, all the individual
neighbourhoods of valid phenotypes are compressed into a single neighbourhood of
phenotype connections. This final neighbourhood is then represented as a graph for
analysis.

MS removes all degeneracy in the genotypes by only allowing the codon values
at each point of the chromosome to represent the choices available thus removing
the degeneracy and neutral mutations that GE can take advantage of. Degeneracy
in GE is provided by the mod rule. Consider the following: a GE codon valued
62 is mutated to 64. When this codon is applied to a binary grammar rule, the
mutation results in no change to the expansion of the tree. Removing the degeneracy
is important as it significantly limits the number of possible phenotypes. If MS
allowed codons values between 0 and 255, and a chromosome was limited to a size
of just 3 codons, that would result in over 16 million possible genotypes that would
need to be explored regardless of the arity of the grammar. MS when investigating a
grammar with an arity of 2, leads to only 8 possible genotypes to explore 3 codons.

πGE presented an extra layer of exploration that needed to be added to MS,
for the mapping of πGE phenotypes. In the above explanation, at each codon of
the genotype, the grammar was consulted for the possible expansion choices, for
that codon. For πGE this process took place at every even valued codon index.
πGE required that for every odd codon index the NT list size was consulted so that
every possible expansion point in the partial πGE derivation tree be explored. This
resulted in an increase in the number of possible genotypes and restricted the size
of genotype that could be explored in this study. The degeneracy for the expansion
order codons was removed, as it was for standard GE codons.
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2.3 Phenotypic Landscape Visualisations

This section visualises the phenotypic landscapes of both GE and πGE. The graphs
of the phenotypic landscapes for both are displayed and discussed. The graph
representation allows for visualisation of multiple connections between phenotypes,
e.g., where a pair of phenotypes are connected via both order, and content codon
mutation events in πGE.

The visualisations produced are limited by several constraints. Beyond the
limitations of printed media, initial tests highlighted a computational constraint for
grammar usage with πGE. Usage of grammars with high arity production rules
resulted in MS not being able to model the phenotype landscape of πGE. This was
due to the increase in possible genotypes that πGE has to explore, as explained in
Sect. 2.2.1.

A simple grammar was designed to enable modelling to take place. This grammar
(Fig. 5) is a binary grammar that has two choices for every rule. The grammar shares
the same core rules as the commonly used symbolic regression grammars (Fig. 6).

Figure 7 shows all possible phenotypes for πGE on the binary grammar. The
common connects for GE and πGE are displayed in blue, while the unique πGE
connections are in red. The addition of position independence in the mapping can
clearly be seen. Position independence allows for a pure neutral mutation that cannot
be seen in GE without the use of degeneracy in the mod rule. The neutral mutation
as indicated with a loop edge on the states.

Phenotypes of a single variable, such as (x1), cannot exhibit neutral mutations
other than via the mod rule, eliminated earlier. This is due to the NT list for such a
tree never exceeding a size of one, thus the left-most non-terminal is always picked.
When the tree sizes of individuals grow to permit a varied ordering in πGE, it is
seen that a mutation in the order codons results in neutral mutations.

Fig. 5 Example grammar 1,
binary grammar

<expr> ::= <op> <expr> <expr> (0)
| <var> (1)

)0(+=::>po<
| * (1)

)0(0x=::>rav<
)1(0.1|

Fig. 6 Example grammar 2,
3 variable variant

<expr> ::= <op> <expr> <expr> (0)
| <var> (1)

)0(+=::>po<
| * (1)

)0(0x=::>rav<
)1(1x|
)2(0.1|
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Fig. 7 The connectivity of
GE and πGE using the
grammar in Fig. 5 is shown.
Each vertex represents a
phenotype and each edge
represent the ability to move
from one phenotype to
another in a single mutation.
The blue edges are common
paths shared by πGE and GE.
The edges in red represent
connections only available to
πGE. These extra
connections are a direct result
of the πGE GPM, who’s
evolvable order allows the
same phenotypes being
connected in multiple ways

+x0 1.0

*x0 x0

1.0

+1.0 x0

+1.0 1.0

x0

*x0 1.0

*1.0 1.0

*1.0 x0

+x0 x0

Table 1 Table outlining features of the connectivity graphs shown for both experiments

Graph features GE grammar 1 πGE grammar 1 GE grammar 2 πGE grammar 2

# V ertices 10 10 21 21
∑n

i=1 DegreeV ertex(i) 42 90 98 198

# Edges 21 45 49 99

V ertexDegree 4.2 9.0 4.67 9.43

The table notes the total number of vertices and edges, the total degree of the graph and the average
degree for a vertex for each GPM approach on both grammars used

The red edges show the mutations that are a direct result of order mutations. It can
be seen how πGE allows for transitions in the search space that are not possible with
GE. Table 1 provides a numerical overview of this increase in connectivity through
a numerical summary of the individual graphs of GE and πGE. It is interesting to
note that an algorithm whose phenotype space has a densely connected search space
will have a greater amount of freedom moving from phenotype to phenotype. This
freedom can aid in increasing the search performance.

In order to provide an understanding of how the landscapes scale, an enhanced
version of the initial grammar is applied (Fig. 6). The second examination of the
connectivity of πGE versus GE was performed using the three variable version
of the binary grammar (Fig. 6). This grammar variant was used to show how the
landscapes scale. The addition of just one extra variable, increasing the total number
of variables from two to three, results in a 110% increase in the number of vertices
needed to represent the phenotypic landscape (from 10 to 21).

Figure 8 shows the phenotypic landscape graph for GE and πGE on the expanded
grammar. Each vertex represents a valid phenotype and each edge represents a
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+x0 x1

+x0 1.0

*x1 x1

*1.0 x1

+x0 x0

*x1 1.0

x0

x1

+x1 x0

+x1 x1

*x0 x1

+1.0 x0

+1.0 x1

+x1 1.0

*1.0 1.0

+1.0 1.0

*x0 1.0

*x1 x0

*1.0 x0

*x0 x0

1.0

Fig. 8 The connectivity of GE and πGE using the grammar in Fig. 6 is displayed. Each vertex
represents a phenotype and the edges represent the ability to move from one phenotype to another
in a single mutation. The edges in red represent the connections that are only available to πGE.
The blue edges shown the common paths shared by πGE and GE. The graph once again displays
the increase in connectivity that the variable order GPM in πGE provides

connection between the phenotypes via a single mutation event. From examining
Table 1 it can be seen that the two setups still produce a vastly different number of
edges between vertices. The neutral mutations and multiple paths between the same
vertices also remain present as expected.

This comparison is summarised in Table 1 and also compared against the
initial setup. The table shows that the addition of position independence to the
mapping process increases the connections between phenotypes in the landscape.
With both the grammars there is slightly more than a 100% increase in the number
of connections between phenotypes. The average degree of a vertex in the graph
doesn’t quite match the increase in nodes, indicating that some nodes get more than
a doubling of edges.

2.3.1 Limitations

The connectivity studies [8, 14] where limited to the exploration of the phenotypic
connectivity in terms of the mutation operation due to certain factors. The massive
amount of possible derivation trees that πGE can produce consumed massive
resources. Once the complexity of crossover would have been added this would
have just exacerbated the problem of possible combinations of trees. The reason for
simple grammars being used is a similar issue in that any increase in arity of the
grammar’s rules resulted in a combinatorial explosion of possible trees.
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2.3.2 Discussion

Visualising of the GE and πGElandscapes was done with the intention of gaining
further insight into how the πGE algorithm works. πGE introduces an increase to
the search space of genotypes with its variable ordered GPM. With this increase in
the search space, how can πGE still maintain good search performance? πGE and
GE was compared using a simple grammar. From this comparison certain aspects of
the πGE algorithm became evident. πGE has a much more connected phenotypic
landscape, that allows for a better ability to explore the search space. πGE also
introduces pure neutral mutations via the varying of the expansion order of the GPM.
These neutral mutations are not possible with GE except via codon degeneracy.

πGE increases the genotypic search space that it must navigate by introducing
an evolvable expansion order as shown in Sect. 2.2.1. This evolvable expansion
order also brings with it some unforeseen benefits. The addition of the variable
order to the GPM has resulted in an algorithm that exhibits far more connectivity
in the phenotypic space than standard GE. πGE’s variable order GPM allows for
phenotypes to neutrally mutate back to themselves. Neutral mutations of this nature
are only seen in GE through the degeneracy gained via the use of codon values and
the mod rule in the GPM. πGE will not only enjoy the benefit of standard GE’s
degeneracy, but will also gain additional degeneracy via the use of a mod rule to
control the variable order GPM, and the natural neutral mutations it gains from the
usage of the variable order GPM.

Redundancy, neutral mutation, and degeneracy can have a drastic effect on the
performance of an EA [3, 26, 27, 40, 44, 45]. This may provide more insight into
how πGE can maintain performance under the strain of order search. πGE presents
a very redundant GPM, with order redundancy, and the codon redundancy on both
the NT choice and tree expansion choice. Ebner et al. [7] have shown that a GPM
that exhibits high redundancy increases evolvability (the ability for random variation
to produce a fitness improvement). The added redundancy in the πGE GPM also
leads to a substantial amount of neutral mutation, as seen in the number of potential
genotypes that MS explored to generate the phenotypic landscapes. This explosion
of genotypes is the reason why πGE could only be modelled on such a limited
landscape.

Kimura [26, 27] argued that in the neutral theory of evolution, most mutation
events are neutral mutations and that only a small number of non-neutral mutations
are actually beneficial. Kimura also studied neutral networks in nature and noted
how most mutations simply navigate this neutral network until a beneficial mutation
occurs. Ebner et al. [6] examined the idea of neutral mutations and neutral networks
in GPM. Shackleton et al. [46] and Shipman [47] also explored this avenue of
research into redundancy and neutral mutations, highlighting again how a many
to one GPM was beneficial over a one to one mapping due to redundancy.

Many others have investigated redundancy in GPM and found it to be a key
component to driving evolution. Kargupta [24] provided a theoretical examination
of a simple redundant mapping in a search space, that underpins a lot of the
research in this area. Rothlauf [44, 45] has also undertaken significant research in
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the area as have Banzhaf [3] and O’Neill [40]. Rothlauf believed that redundancy
was a good this only if the optimum solution is over-represented in the search
space. This represents a sampling of research in the area, and in the majority of
cases, redundancy and neutral mutation are viewed as a beneficial property in a
mapping from genotype to phenotype. πGE has a larger search space than GE
to explore, and the added connectivity, redundancy and neutral mutations that the
evolvable ordering of the GPM provided πGE is the only difference between the two
algorithms. Therefore it is argued that the increased connectivity and redundancy in
πGE, must be responsible for πGE’s ability to achieve comparable performance to
GE.

2.4 Expansion Order in πGE

What happens within πGE with regards to the expansion orders used in the
algorithm. Does πGE effectively search the order space and in doing so does the
population converge to a specific ordering. In [14], two metrics were developed and
used to monitor how far a πGE population was away from depth-first and breadth-
first orders. The orders of πGE individuals during evolution were recorded, from a
random order initialisation and a fixed order initialisation, on a range of setups and
problems. It was shown that πGE drifts towards a distribution of orders rather than
one particular order. The effect that grammar complexity has on the distribution of
orders was discussed and it was found that more complex grammars lead to a wider
distribution of orders. Crossover was examined and found to have limited impact
on the orders observed within πGE. The orders discovered during evolution were
examined to verify that πGE continued to search the order space, and encountered
new orders during evolution. Derivation tree bias was also examined and it was
found that the addition of the variable expansion order in πGE did not change the
bias in the initial population.

2.5 πGE Summary

The previous sections have outlined position independent mapping and provided a
discussion on the advantages of adopting the approach within GE. The addition of
the variable mapping introduces an increase in the genotype space to be searched.
This increase in search also provides a more connected search space which allows
for an increase in ability to mutate between possible solutions, and also introduces
a significant amount of neutral mutations. The following section will expand on
this idea of position independent mapping by using Tree Adjunct Grammars and a
position independent mapping to enhance GE further.
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3 TAGE: Tree Adjunct Grammatical Evolution

Tree Adjunct GE(TAGE) is a system designed by Murphy et al. [33, 35–37].
TAGE uses Tree Adjunct Grammars(TAG) instead of canonical GE’s context-free
grammars to construct solutions to problems. The usage of TAGs and requires the
adopting of a GPM that extends on from that used in πGE. This section outlines the
incorporation of Tree Adjunct Grammars (TAGs) into the standard GE algorithm
and goes on to highlight some of the advantages of using TAGs in GE. This
work is an overview of the work performed by Murphy in [32] and its associated
publications [33, 35–37]. While it has been shown explicitly in the publication by
Murphy et al. that TAGE provides a performance increase over GE, this section
will look to outline how TAGE works as well as highlight some of the benefits of
adopting this approach to GE.

3.1 Tree Adjunct Grammars

TAGs, have been used previously in GP in the form of TAG3P by Hoai and McKay
[17] and later TAG3P+ [16, 18]. They have also been used for incremental and
developmental evaluation [19, 20] and ant colony optimisation [1]. GE uses context-
free grammars, that offer users with a way to easily create grammars. TAGE takes
advantage of the ease of construction that CFGs offer and automatically converts
CFGs to TAGs, as TAGs are not very intuitive to create.

3.1.1 From CFG to TAG

A lexicalised TAG (LTAG) is a special instance of a TAG. A lexicalised grammar
has two defining properties. Firstly the grammar consists of a finite set of structures,
each structure with at least one terminal symbol, known as the anchor. Secondly, it
has at least one operation for composing these structures together.

The TAGs used in TAGE are LTAGs, as all leaf nodes of the elementary trees,
with the exception of foot nodes, are labelled with terminal symbols. The terms TAG
and LTAG will be synonymous throughout and will both refer to lexicalised TAGs.
Joshi [23] stated that for a “finitely ambiguous CFG1 which does not generate the
empty string, there is a lexicalised TAG generating the same language and tree set
as that CFG”. Joshi and Schabes also provided an algorithm for generating such
a TAG. This algorithm, presented in Algorithm 2, as well as being outlined below,
allows existing CFGs used by GE to be transformed into TAGs. It also enables
TAGs to be created by designing new CFGs. This is beneficial as CFGs can be more

1A grammar is said to be finitely ambiguous if all finite length sentences produced by that grammar
cannot be analysed in an infinite number of ways.
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Algorithm 2: Generating a TAG from a CFG
Require: G = {N, T , P, S} {A CFG}

g ← createDiGraph(G)
c ← findBaseCycles(g)
R ← getRecursiveProductions(P , g)
NR ← P − R;
I ← generateTreesByExpansionEnumeration(S, NR)
A ← ∅
for all ci in c do

for all nj in ci do
E ← I ∪ A

if a tree in E has a node labelled the same as nj then
A ← A ∪ generateTreesByExpansionEnumeration(nj , ci , NR)

Fig. 9 An example CFG <e> ::= <e> <o> <e> | <v>
<o> ::= * | + | -
<v> ::= X | Y

trivially designed by hand. Figure 10 provides an example of a TAG produced by
this algorithm.

The algorithm proceeds as follows. Given a finitely ambiguous CFG,

G = {N,Σ,P, S}

where N is the set of non-terminal symbols, Σ is the set of terminal symbols, P is
the set of production rules, and S is the start symbol:

1. Construct a directed graph, g, from G. The nodes of g are labelled with symbols
from N and the edges of g are labelled with the productions from P which map
between them;

2. Find the set of minimal cycles, c, in g such that they contain no other cycles
within them;

3. The productions in P are then divided into two separate sets, R is the set of
recursive productions, and NR is the set of non-recursive productions in the
grammar. A production is recursive if it is part of a cycle, ci ;

4. Using S as the root node, create the set of all possible derivation trees using
only the productions in NR. This is the set of initial trees, I ;

5. Create A, the set of auxiliary trees, as an empty set. A = ∅;
6. For each node nj , in each of the cycles ci , if there is a tree in I∪A that contains a

node which has the same label as nj , then create the set of all possible derivation
trees using only the productions in NR and the current cycle where the nj is
the root node and the foot node is the node with the same label as nj . Add this
set of trees to A;

7. This continues until all cycles have been processed.
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Fig. 10 The set of initial trees, I = {α0, α1}, and the set of auxiliary trees, A = {
β0, β1, . . . , β11

}
,

generated by the transformation of the CFG shown in Fig. 9 into a TAG using Algorithm 2
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The resulting TAG is both weakly and strongly equivalent to the source CFGs.
That is to say, the TAG can produce the same language and the same tree set as the
source CFG. Algorithm 2 provides a concise summary of this algorithm, with an
example of a TAG produced by the algorithm can be seen in Fig. 10. This TAG was
generated from the CFG shown in Fig. 9. The following section outlines how TAGs
have been applied to date in the field of EC, with a particular focus on the field of
GBGP.

3.2 TAG Genotype-Phenotype Mapping

The novel Tree-Adjoining Grammatical Evolution (TAGE) [34–37] is proposed
and developed in order to make use of TAGs in GE. This section describes the
required modifications to the GE algorithm in order to make use of TAGs. Firstly, a
discussion is provided on TAG composition operations and how they might be used
in conjunction with the linear genotype used by GE. Following this, a genotype
to phenotype mapping algorithm which makes use of TAGs is described in detail.
Other components of the GE algorithm are then discussed in the context of their use
in TAGE.

3.3 Tree Composition Operations for Linear Mapping

While TAGs can construct derivation trees using two different composition oper-
ations, adjunction, and substitution, TAGE makes exclusive use of adjunction.
While TAGs which do not make use of the substitution operator are equivalent to
those that do, the use of substitution operations allows for a much more compact
representation, with fewer elementary trees. This is discussed further in Sect. 3.6. An
interesting and powerful feature of TAGs is that they have the ability to guarantee
complete derivation trees from which valid phenotypes may be extracted at every
stage of the derivation process. This property is known as feasibility, and guarantees
that a TAG derivation tree of any size will produce a syntactically valid sentence, as
defined by the grammar.

In order to guarantee feasibility when mapping from a GE chromosome of
finite length using a TAG, the use of the substitution operation must be excised.
If both composition operations are to be used, the chromosome would require
partitioning, with the first partition mapping adjunction operations and the second
mapping substitution operations. The amount of substitution operations required to
complete the tree is dependent upon the number of adjunction operations applied.
As there is a finite number of codons in the chromosome, no guarantee can be
made that the second partition will be of a sufficient length to map the required
amount of substitution operations to complete the tree. Alternatively, a quasi-diploid
chromosome approach could be used, where a second chromosome is used for the



Mapping in Grammatical Evolution 97

sole purpose of mapping substitution operations. While this approach removes the
need for a chromosomal partitioning scheme, it remains impossible to guarantee that
there will be sufficient codons to map the requisite number of substitution operations
to complete the tree, and hence, impossible to ensure feasibility.

The exclusive use of the adjunction operation requires the TAGs utilised in this
thesis to be fully anchored LTAGs. That is to say that, with the exception of the foot
node, all branches of the generated auxiliary trees are fully expanded with terminal
symbols labelling all leaf nodes. In doing so, this allows the adjunction operation to
take a complete tree as input, and return a complete tree as output. The output tree is
composed of an auxiliary tree adjoined to the input tree. This approach guarantees
complete derivation trees before and after each adjunction operation, without the use
of the substitution operation, ensuring feasibility. For example, initial and auxiliary
trees can be seen in the sample grammar presented in Fig. 10. This design decision
introduces some limitations to the system which are discussed in Sect. 3.6.

3.4 Genotype-Phenotype Mapping

TAGs make use of tree composition operations, combining partial or elementary
trees together in the construction of their structured sentences. TAGs differentiate
between the derivation and derived tree. While the resulting TAG derived tree
(Fig. 11) is equivalent to the CFG derivation tree, TAG derivation can be more

Fig. 11 An example of a TAG derivation tree and its respective derived tree. The derivation tree
(a) defines the adjunction operations which produce the derived tree (b). The nodes in (a) are
labelled with elementary trees with each edge declaring an adjunction operation between parent
and child. Each edge is labelled with the address of a node in the parent tree where the adjunction
will occur



98 D. Fagan and E. Murphy

compactly described by using a TAG derivation tree (Fig. 11). The nodes of a TAG
derivation tree are labelled with elementary trees, and each of the edges between
derivation nodes is labelled with an address. This address provides the location of a
particular node within the elementary tree labelling the parent derivation node of that
edge. It is at this location that the auxiliary tree labelling the child node of the edge
is to be applied using a composition operator. Applying each of these composition
operations creates the TAG derived tree.

In TAGE, the genotype is the same as that in GE. However, while the codons are
applied to the same general mapping rule, codonV alue % c = choice. c no longer
represents the number of available production choices. Rather, in place of c there is
either the number of possible locations throughout the entire derivation tree where
adjunction might be applied, codonV alue % ‖adjoinableAdresses‖ = choice or
the number of auxiliary trees, one of which, may be adjoined to a particular location,
codonV alue % ‖A′‖ = choice. Another important difference from GE is that
mapping from genotype to phenotype in TAGE will only terminate when the end
of the chromosome is reached. While mapping in GE may expand all non-terminal
nodes before reaching the end of the chromosome, there are always adjoinable nodes
available in TAGE derivation trees.

To begin mapping, a genotype to phenotype in TAGE an initial tree is required
and is chosen from the set of initial trees, I . A list of addresses of adjoinable nodes
in the tree is then created. A node address is that node’s index in a breadth-first
traversal of the elementary tree it is contained in. An adjoinable node is any node
which has not already been adjoined to and is labelled with a symbol which is also
the label of the root node of an auxiliary tree in A. Adjunction is restricted from
occurring on foot nodes. An auxiliary tree is then chosen from A. This auxiliary
tree will be adjoined to the initial tree at the chosen node. Both trees now form a
TAG derivation tree of size two. With an edge going from root node, labelled with
the initial tree, to child node, labelled with the auxiliary tree. This edge denotes the
adjunction operation to be performed. The trees labelling each node are traversed,
updating the list of adjoinable node addresses. The used address is removed and
the addresses of any additional adjoinable nodes in the new auxiliary tree are added.
The next node address and auxiliary tree are chosen and added to the derivation tree.
All choices in this example consume a codon, and the above process continues until
all codons are consumed. A worked example is presented in the following section,
with each step of mapping portrayed in Fig. 12. Pseudo-code for the mapping can
be seen in Algorithm 3.
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Fig. 12 The derivation tree (left) and derived tree (right) throughout TAGE derivation. The shaded
nodes indicate new content added at each step. (a) Initial tree α0. (b) β7 adjoined to α0 at node
address 0. (c) β9 adjoined to β7 at node address 0. (d) β2 adjoined to β7 at node address 1



100 D. Fagan and E. Murphy

Algorithm 3: TAGE Derivation: GPM using a TAG, G, and a chromosome,
C

Require: G = {N,Σ, I,A, S} {A TAG}
Require: C {A chromosome}

addresses ← ∅
codon ← C.removeFirst
root ← I .get(codon)
nodeAddresses ← root .getAdjoinableAddresses
for all ai in nodeAddresses do

addresses.add
(
(root, ai )

)

while C.size> 1 do
codon ← C.removeFirst
node, address ← addresses.remove(codon)
type ← address.getSymbol
trees ← A.getAll(type)
codon ← C.removeFirst
auxT ree ← trees.get(codon)
node.adjoin(auxT ree, address)
nodeAddresses ← node.getAdjoinableAddresses
for all ai in nodeAddresses do

addresses.add
(
(node, ai)

)

tree ← root .getDerivedTree
phenotype ← ε

for all nodei in tree.getLeafNodes do
phenotype ← phenotype + nodei .getSymbol

return phenotype

3.4.1 TAGE Mapping Example

Given the TAG G, where Σ = {X, Y, +, -, *}, N = {<e>,<o>,<v>},
S =<e> and I and A are as shown in Fig. 10, derivation using the chromosome
(12, 3, 7, 14, 9, 36, 14) proceeds as follows.

The first codon value, 12, is read. This is used to select an initial tree from I , by
using ||I ||, which is in this case is 2. Utilising the same mapping function as GE,
12 mod 2 = 0, the zeroth tree from I is chosen, α0. This tree is set as the root
node of t , the derivation tree (as seen in Fig. 12).

Following this, a location to perform adjunction must be selected. The vector V

is created of the adjoinable addresses available within all nodes (trees) contained
within t . An adjoinable address in an elementary tree is the breadth-first traversal
index of a node. The node must be labelled with a NT symbol of which there is
an auxiliary tree of that type, and where no auxiliary tree is currently adjoined at
that index. In this case, V = {α0[0]} (the zeroth node of α0). A codon is read,
3, and an address is selected from V using ||V ||, 3 mod 1 = 0 indicating which
address to choose, V [0]. Adjunction will be performed at α0[0], or node index 0
of tree α0, <e>. Next, an auxiliary tree is chosen from A that is of the type T,
i.e., the label of root node of the auxiliary tree is T, where T is the label of the
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node at which adjunction is being performed. In this case T = <e>. There are 12
such trees in A. Reading the next codon, 7, and using ||A||, 7 mod 12 = 7, β7
is chosen. This is added to t as a child of the tree being adjoined to, labelling the
edge with the address 0 from α0[0], see Fig. 12. The adjoinable addresses in β7 are
added to V for the next pass of the algorithm, V = {β7[0], β7[1]}. A codon is
used to select an address, followed by another codon to select an auxiliary tree of
the correct type, adding a new node and edge to the derivation tree with each pair
of codons read. This process is repeated, consuming two codons with each iteration
until all remaining codons have been read. If the chromosome has an even number
of codons, there will be a single codon remaining, unread, as an intron at the end
of the chromosome. The resulting derivation and derived trees at each stage of this
process can be seen in Fig. 12.

3.5 Operators

This section describes the standard GE components and how they are applied in
TAGE. Basic initialisation used for TAGE is the same as that for GE. As both
representations are based upon linear integer genomes, random initialisation, can
be used without any change. Further discussion regarding initialisation in TAGE
is explored in [36]. Both selection and replacement in TAGE are the same as those
used in GE. As TAGE and GE share the same genotype, variation operations used by
canonical GE, such as integer-flip mutation and one-point crossover, can be utilised
by TAGE. However, due to the genotype to phenotype mapping used by TAGE,
these operations can generate different effects when used. It is also worth noting
that subtree style operations remain unexplored in TAGE.

In standard GE, the modification of a single codon in the encoding region of a GE
chromosome can have multiple effects. These effects include: no change due to the
use of the mod rule; changing a single terminal symbol; affecting the entire course of
expansion in the derivation tree from the expansion encoded by that codon onward,
through the right side of the derivation tree, due to the ripple effect. Whereas in
TAGE, the same modification can bring about a different range of effects. Small
effects similar to those of GE can occur: with no changes to the phenotype occurring,
due to the redundancy of the mod mapping rule; the modification of a single terminal
symbol by replacing an auxiliary tree with similar tree; or the modification of many
terminal symbols by replacing the auxiliary with a very different tree. However,
as codons in the TAGE genotype encode both for location (adjoinable addresses)
and content (auxiliary trees), a modification to the chromosome which affects the
number of adjunction addresses available for the next adjunction operation can
induce a ripple effect. Unlike GE, there is no directional dependence inherent in
the TAGE genotype-phenotype mapping. As such, adjunctions may occur in any
part of the tree at any stage of derivation. This causes the ripple effect to occur
throughout the entire tree, rather than just at the non-terminal expansions which
follow the affected expansion as seen in GE.
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One feature of the use of these operators with the TAGE representation is that
only crossover, a highly destructive operator in TAGE, can affect the size of a TAGE
individual. With canonical GE, where only a portion of the genotype might be used
to encode the phenotype, mutation can introduce additional non-terminals into the
derivation sequence requiring the use of additional codons to terminate mapping,
resulting in a larger phenotype. With TAGE, the entire genotype is used to encode
the phenotype, and as such, mutation has no effect on the size of the derivation tree.
Mutation can only affect the size of the phenotype if elementary trees of varying
size are mutated into the derivation tree. It is only through crossover that TAGE
genotypes and derivation trees can change in size.

3.6 Limitations of TAGE

As substitution allows for a more compact representation [23], making sole use
of the adjunction operation can result in the grammar becoming very large. CFGs
containing non-terminal symbols which can be expanded using many different
production rules can result in the TAGE representation becoming unfeasible.
As Algorithm 2 creates all auxiliary trees from an enumeration of all possible
expansions of the non-terminal symbols from root to leaf, a small increase in the
number of possible expansions for any symbol can result in a large increase in
the number of trees in the representation. As an example, rules from the relatively
simple grammar in Fig. 9 are modified, adding extra production choices for the
<o> and <v> symbols. When Algorithm 2 is applied to the modified grammar,
the number of auxiliary trees in the grammar increases to from the original 12, as
seen in Fig. 10, to 30. As the grammar complexity increases the number of trees also
increases.

To partially address this limitation, Murphy put forward the idea of Tree
Stubs(TS). The idea behind TS is that the sets of initial and auxiliary trees in TAGE
are not generated at the beginning of the algorithm, but rather sets of elementary
tree stubs are generated. This can greatly reduce the amount of memory needed to
store the grammar. An elementary tree stub is an almost fully expanded elementary
tree, with the terminal symbol leaf nodes excluded. In their place is a number
representing the total number of different terminal nodes (variations) that can be
attached at that point to complete the tree. For example, continuing with the sample
grammar from Fig. 10, the original 12 auxiliary trees can be reduced to two auxiliary
tree stubs. The modified version of the grammar presented above which originally
had 30 auxiliary trees is also reduced to just two auxiliary stubs.

3.6.1 Generating TAGE Tree Stubs

When choosing a tree in TAGE, the modulus operation is performed on the codon
value and the number of trees available for selection. This results in a number, c,
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Algorithm 4: Selecting a complete elementary tree from stubs
Require: graph {the symbol/production graph used in TAG creation}
Require: symbol {root symbol for stubs}
Require: stubs {a nonempty set of stubs rooted with symbol}
Require: choice {the codon value}

{Get choice in the correct range}
choice ← choice mod stubs.sumVariations
{Find which stub to expand}
sum ← 0
while sum ≤ choice do

sum ← sum+ getNextStub.variations
stub ← getCurrentStub
{While there are still nodes to expand get the next node and count its variations}
product ← 1
while stub.hasNTLeafNodes do

node ← stub.getNextNTLeafNode
vars ← node.getVariations
{Graph edges are labelled with productions}
nrprods ← graph.getNonRecursiveEdges(node.label)
{Get the productions with only terminal symbols}
tprods ← nrprods.getTerminalProductions
{Divide by products to discard information for already expanded nodes then mod by the
number of variations at that node}
production ← tprods.get((choice/product) mod vars)
{Add the new production to the tree}
node.addChildren(production)
{Multiply so the next node will discard the correct information}
product ← product ∗ vars

between zero and the total number of trees less one. If c has been used before,
the correct tree is retrieved directly from a map of previously constructed trees.
Alternatively, if c has not been seen before, then in order to find the correct stub to
expand, each stub’s total number of variations are summed, in order, until the sum
is greater than c. Following this, the stub is completed by visiting each NT leaf node
of that last stub in a depth-first manner, dividing c by the product of the variations of
all the NT leaves visited so far while expanding that stub. Performing the modulus
operation on this product and the number of possible variations at the current NT
node results in a number between zero and the total variations possible at that node.
This allows the selection of the correct terminal production to expand the current
node with. The process continues until there are no additional NT nodes to expand,
and the complete tree is stored in a map for later use before being returned. This
process is further explained in Algorithm 4.

This process addresses the problem of transforming CFGs which contain many
terminal production rules for the same symbol into TAGs. It does not, however, fully
solve the problem of transforming highly complex CFGs into TAGs. If a CFG has
a large number of non-terminal production rules for the same symbol, regardless
of the number of terminal productions then the size of the generated tree sets will
remain large.
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3.7 Connectivity

Having displayed how to create a TAG from a CFG and outlining the mapping
process that exhibits position independence, it would stand to argue that TAGE
will also exhibit the same increase in connectivity as πGE. Murphy et al. [36]
examined the mutation landscape of TAGE and GE in depth. The findings of this
study showed that TAGE not only gained connections from the addition of the
position independent mapping, but that the usage of TAGs provided a far more
expressive landscape with far fewer codons than GE. To fully grasp the magnitude
of the difference that TAGs add, in terms of expressiveness, and connectivity, the
authors refer you to [32, 36]. The images presented in both show just how much
TAGs add to the GE representation.

3.8 Summary

The previous sections have outlined what a TAG is, how to convert a CFG to a TAG,
and described the benefits and limitation of the algorithm TAGE. TAGE present a
highly expressive form of GE, that is evaluable at each step of the derivation process.
TAGE can do a lot more with a lot less genetic material. TAGE has been shown to
outperform GE in many cases. However, there are some drawbacks to TAGE when
a high arity grammar is used. This may or may not hinder future developments with
TAGE in domains such as program synthesis. However, as storage and ram increase
the inability to use these tree building grammars will be negated. TAGE has been
extended further to incorporate a Gene Regulatory Network (GRN) to guide the
construction of TAGE solutions and allow for a developmental approach to TAGE,
DTAGE [32, 38].

4 Conclusions

The chapter presented the current state of the art in the GE Genotype-Phenotype
Mapping. A comprehensive overview of previous studies was presented before the
chapter focused on a particular vein of research in position independent mappings.

πGE was presented and examined and found to provide GE with much-increased
connectivity. It was argued that this allowed for GE to better move through the
phenotype space during variation operations.

Following this TAGE was presented and showed how position independence
could be further enhanced by using a more complex grammar. TAG exhibited
the same increased connectivity of πGE be also presented a GE variant that was
evaluable at any stage of the derivation process. This fact remains an open issue to
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be exploited in the current world of semantic GE. Some drawback to TAG were also
stated and methods to overcome them examined.

In closing the authors find that the added power and performance of TAGE
present the best approach going forward in the mapping domain. It truly provides
GE with a best of both worlds approaches to GE whilst also providing excellent
performance and fully evaluable trees during derivation.
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Theory of Disruption in GE

Erik Hemberg

Abstract We formalize and describe the mapping process of integer input (geno-
type) to an output sentence (phenotype) in Grammatical Evolution (GE). The aim
is to study the grammatical and search bias which is produced by the mapping. We
investigate changes in input and the effect on output and analyze the neighboring
solutions as well as the effect of changes and bias in representation. Different types
of changes are defined to allow classification of the effects that input changes
(operators) have. The changes are a part of identifying what the neighborhood
for GE search looks like. We call this disruption in GE. Furthermore, a schema
theorem is introduced for investigating preservation of material during application
of variation operators, an attempt to identify the population effects.

1 Introduction

In this chapter we ask the question: what happens to the output (phenotype) when
there is a change in the input (genotype) and a Context Free Grammar mapping
is used in Grammatical Evolution (GE)? The aim is to extend the studies of
the genotype-to-phenotype mapping and investigate the effect on derivations and
output resulting from one single change in input as well as from multiple changes
in input [9]. The mapping of GE introduces redundancies and dependencies on
previous input and the parent in the derivation tree, as well as the design of the
grammar. These properties have effects on the preservation of the derivation; often
the changes can be quite large, something which in GE is called a “ripple”, for
the multiple changes that can occur during e.g. mutation or crossover [13]. When
the locality of the mapping in GE was investigated, the study concluded that some
operators in GE had low locality, i.e. genotypic neighbors did not correspond to
phenotypic neighbors [16].
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An intuitive description of a grammar is that of a mechanism for producing sets
of strings [3, 8]. The use of a grammar in GE is to rewrite or generate sentences. A
grammar in Evolutionary Computation (EC) is an indirect form of representation,
inducing bias to the search. Bias are all the factors that influence the form of each
solution [24]. For a successful search, a proper representation of the problem and
of the appropriate search operators is needed [15]. GE is approached with a more
formal description with inspiration from previous works on grammars and mapping
in EC [19, 24, 25].

The contribution is analysis and insight regarding the use of grammars in
EC, more specifically, the use of grammars with the GE algorithm. We formally
describe GE to clearly show the different representations within the algorithm and
theoretically analyze the impact of change on GE input. We show how an indirect
representation from a linear input sequence reacts to changes, and the conclusion is
that the fewer non-terminals there are in the grammar, the less susceptible it will be
to disruption. Finally, we introduce a GE schema were operators were examined
in relation to how sequences of the individual genotype are propagated over a
generation.

The structure of the chapter is the following. Background is in Sect. 2. In
Sect. 3 we formalize and describe the mapping process in order to break down
the grammatical and search bias which is produced by the mapping. Section 4
investigates changes in input and the effect on output and analyze the neighboring
solutions and the effect of changes (and bias in representation), of both single and
multiple changes. Section 5 has a discussion, and conclusions are in Sect. 6.

2 Background

Grammatical Evolution (GE) is a grammar-based form of Genetic Programming
(GP). The GE system is flexible and allows the use of alternative search strategies,
whether evolutionary, deterministic or of some other approach. This system also
includes the ability to bias the search by changing the grammar used. Editing
the grammar modifies the output structures. The genotype-phenotype, i.e. input-
output, mapping means that GE allows search operators to be performed on any
representation in the algorithm, e.g. on the genotype (integer or binary), as well as
on partially generated phenotypes, and on the completely generated derivation trees
or phenotypes.

The representation, i.e. the encoding, as well as the operators can be changed
in an attempt to make the search smoother [2]. However, some studies claim
that complex gene interactions are advantageous for the chance of exploring
new, functionally advantageous phenotypes, i.e. evolvability as a mechanism of
stabilization [20]. Another investigation study neutral diversity and claim that if
the number of phenotypes accessible to an individual by mutation is smaller than
the total number of phenotypes in the fitness landscape then mutational robustness
can facilitate adaptation [5].
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The bias in GE mapping that occurs when a production is selected from a rule
with respect to the design of different grammars and grammar-defined introns has
been studied [12]. Further studies look at search, neutral evolution and mapping in
evolutionary computation [25]. The analysis is done by grouping the GE codons
into quotient sets and showing their adjacencies regarding the mapping, this is
then used to explain the population’s movements on neutral landscapes [25].
The equivalence relation of the quotient sets is linked to the search neutrality
of the codons, i.e. neutrality (many-to-one mappings) related to codons being
indistinguishable on applying the mutation part of the evolutionary process. The
locality of a genotype-phenotype mapping describes how well genotypic neighbors
correspond to phenotypic neighbors [17]. Some operators in GE have low locality.

In this chapter we further study change, disruption and schemas in GE. The
following definitions needed for this. In a Context-Free Grammar the generation
of a word is not dependent on the surroundings, see [3].

Definition 1 (Context-Free Grammar (CFG)) A CFG is a four tuple
G = 〈N,
,R, S〉, where:

• N is a finite non-empty set of non-terminal symbols.
• 
 is a finite non-empty set of terminal symbols and N ∩
 = ∅.
• R is a finite set of production rules of the form R : N �→ V ∗ : A �→ α or (A, α)

where A ∈ N and α ∈ V ∗. V ∗ is the set of all strings constructed from N ∪ 


and R ⊆ N × V ∗, R �= ∅.
• S is the start symbol, S ∈ N . ��
“Context-Free” means that for a rule A → α, A can always be replaced by α,

regardless of context [8]. A grammar generates a language L(G), see [21]. The
following definition of rewriting or generation is used, see [8]

Definition 2 (Generation) Let G = 〈N,
,R, S〉 be a context-free grammar and
let α′, β ′ ∈ V ∗. α′ directly generates β ′, written as α′ ⇒ β ′ if there exist
α1, α2, α, β ∈ V ∗, such that α′ = α1αα2, β

′ = α1βα2 and α → β is in R. ��
Note that the multiple-step generation,

∗�⇒ is the reflexive-transitive closure of⇒.
A set is closed under some operation if application of that operation on members of
the set always produces a member of the set. A set that is closed under an operation
satisfies a closure property [8].

A sentential form of G is S(G) = {x : S
∗�⇒ α, α ∈ V ∗}. If α ∈ 
 then it is

called a sentence.

∗ denotes the set of all finite length 
 sequences [8].

Definition 3 (Language) The language generated by G is L(G) = S(G)∩

∗ = {x : S ∗�⇒ x, x ∈ 
∗}. ��

The CFG can be expanded to a Probabilistic Context-Free Grammar, where each
rule has an associated probability, see [21].
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Definition 4 (Probabilistic Context-Free Grammar (PCFG)) The Probabilistic
CFG is the tuple 〈G,P 〉, where G is a CFG and P is an ordered set of probabilities
{pij }, i is the index for the non-terminal left-hand side and j is the index for the
productions with the same left-hand side.

• For all rij ∈ R there exists one probability pij ∈ P .
• For each pij ∈ P, 0 ≤ pij ≤ 1. If pij = 0 then rij can be eliminated from the

grammar.
• For all ri∗ ⊆ R, i.e. ∗ is a wildcard and ri is the restriction R

∣
∣{ni }, {ni} ∈ N ,

∑
0≤j≤|ri∗| pij = 1. |ri∗| is the number of productions with the same non-

terminal left-hand side. Let ni ∈ N be the non-terminal with index i; then

ri∗ = {(ni, r(ni)) : r ∈ R} ⊆ R (1)

��
Now it is possible to look at derivations from the PCFG, where expansion of

the grammar generates sentences in the language. That is, first the start symbol is
expanded, and then each non-terminal, to create a sentential form. The derivation
is finished when there are only terminal symbols in the string, a sentence in the
language, from [21].

Definition 5 (Derivation) A derivation � in a grammar G is a sequence of
production numbers, 〈i0, . . . in〉, such that

1. For 0 ≤ k ≤ n, Pik is a production of G.
2. For each k there exists a sentence δk = αkAkβk, Ak ∈ R, αk, βk ∈ V ∗.
3. There is a string δn+1 ∈ V ∗.
4. δ0 = S (i.e. α1 = β1 = �)
5. For each 0 ≤ k ≤ n, Pik = Ak → γk .
6. For each 0 ≤ k ≤ nk, δk = αkAkβk ⇒ αkγkβk = δk+1. ��

From Definition 5 it is possible to give a probability to a word, see [21].

Definition 6 (Word Probability) The probability of a word w ∈ 
∗ is

p(w) =
∏

1≤k≤|�|
pk (2)

where |�| is the length of the derivation. ��
Here, we define a derivation tree as multiple derivation steps, see [22].

Definition 7 (Derivation Tree) The derivation tree from the start symbol is
denoted by D := {S ∗�⇒ α, α ∈ 
∗}. ��

In the derivation tree a branch is defined as

Definition 8 (Branch) The branch is denoted D(A), from the non-terminal A,
therefore D(A) = {A ∗�⇒ α, α ∈ 
∗, A ∈ N},D(A) ⊂ D ��



Theory of Disruption in GE 113

Within the input sequence and derivation tree there are partial derivation trees called
subtrees, see [23].

Definition 9 (Derivation Subtree) A subtree is DN = {x ∗�⇒ α, x ∈ N,α ∈ V ∗}.
��

Differences in derivations are distinguished by their derivation trees, see [21].

Definition 10 (Derivation Difference) Two derivations, δ and δ′ are different if
their derivation trees are different. ��

3 Formal Description of GE

This section provide complementary insights into the GE algorithms. GE is
approached with a more formal description with inspiration from works on gram-
mars and mapping in EC [18, 23, 25]. We aim to understand how changes in input
are translated to alterations in output, see Fig. 1. In GE the grammar maps the input
(genotype) to the output (phenotype) which is evaluated. During this process several
mappings between different spaces are made. Different grammars which impose
different mapping orders have different search behaviors. When understanding and
expanding GE it can be useful to see where explicit bias and different impacts of
change in one space will occur and how these relate to the space they are mapped to
and also which operators should be used.

In GE there is redundancy in more than one of the mappings, i.e. a many-to-
one mapping between input and output. The grammar has an impact on both the
derivation of the output (phenotype) and the final phenotype, e.g. on non-terminals
and rules, and on the language that the terminals can generate. The GE evaluation,
consisting of genotype-phenotype (input-output) mapping and fitness assignment.
The structure of this section consists of a formal description of the components of
GE in Sect. 3.1, while we defer a discussion on the implications of this description
to Sect. 5.

3.1 GE Components

We start by describing the components of GE mapping more formally, in order to
illustrate the mapping bias mediated by the CFG from input to output. The input
sequence (genotype) consists of chromosomes which are comprised of codons. In
GE a chromosome is a sequence of integers.1,2

1Canonical GE has a binary chromosome that will be transcribed to integers, f : Z2 →
Z2m, f (C2) = C where m is the codon size and C2 the binary representation of the chromosome.
Here we simplify and skip the transcription step, binary-to-integer, and use a sequence of integers
instead.
2
N refers to the natural numbers, Z denotes integers, and Zn integers modulo n.
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Fig. 1 Grammatical Evolution spaces. In GE the grammar maps the input (genotype) to the output
(phenotype) which is evaluated. During this process several mappings between different spaces are
made. The arrow labels indicate the mapping from one space to another

Definition 11 (Individual in GE) An individual in GE is a single chromosome C,
a sequence of codons. Each codon uses m bits to encode an integer: this gives codon
values in the range [0, 2m − 1]:

C = 〈c0, . . . , cn〉, ci ∈ Z2m, 0 ≤ i ≤ n, m, n ∈ N

��

3.1.1 Chromosome to Production Choice Sequence

In the mapping, the leftmost non-terminal is expanded and the value of the current
codon decides which production to choose for the expansion of the rule. A Context-
Free Grammar is denoted by G (Definition 1 on page 111) and a Probabilistic
Context-Free Grammar is the tuple 〈G,P 〉 (Definition 4 on page 112). We denote
the space of Probabilistic Context-Free Grammars as 〈G,P 〉 ∈ G. The first step
of the mapping in the GE system can be described as a chromosome C and a
grammar 〈G,P 〉 generating a production choice sequence of production choices
I = 〈i0, . . . , in〉, n ∈ N. Alternatively, there is a mapping between two integer
spaces, lists of integers to lists of integers with max value being the maximum
number of production choices of all the rules in the grammar.
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Table 1 Codon change and
production choice type
change

Type Codon (c) Production choice (i)

Unchanged c = c′ i = i′

Redundant c �= c′ i = i′

Change c �= c′ i �= i′

These are the impacts from a redundant determin-
istic mapping

f : 〈Z2m, . . . ,Z2m〉 × G → 〈Zrmax 〉, f (〈G,P 〉, C) = I (3)

For the integer input sequence rmax = |R| we use unique identifiers for each
production choice up to the number of productions in the grammar3 and I can also
be written as a derivation tree D.

The types of changes that are possible from the mapping from codon sequence
to input sequence, f (C) = I are shown in Table 1. The cases c = c′ and i �= i′ are
not possible when using a deterministic mapping. (′ denotes the next time step, not
only change)

To ensure that a correct production is chosen the modulo of the codon value
is used to decide the corresponding production. The integer value of the codon is
mapped to an integer value in the range of the number of production choices for
the rule, [0, |Ak|]. In other words, the mapping decides which production choice to
use, given the derivation step k, 0 ≤ k for index of the current rule (non-terminal
to expand) and j for the index of the codons cj . There is a many-to-one mapping
from codon integer value and non-terminal to an integer representing the production
choice

m : Z2m ×N → Zrmax ,m(c,A) = i (4)

denoting ika = m(cj , Ak) with

m(cj , Ak) = cj mod |Ak| Ak ∈ N, cj ∈ C (5)

where |Ak| is the number of productions corresponding to non-terminal Ak . To get
a unique identification for ik then

u : Z|Ak | × G × G → Zrmax , u(ika ,G,Ak) = ik (6)

The point of the following equation is to clarify the derivation order in which the
phenotype is generated by the grammar. In canonical GE the derivation sequence

3In canonical GE the maximum number of production choices is rmax = maxri∗∈R(|ri∗|). If rmax

uses unique identifiers the analysis can be facilitated. The context and analysis should make it
obvious when the integer inputs are unique or ambiguous.
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is read from left-to-right. Ak is the leftmost non-terminal in the derivation δk . The
sequence of non-terminals in derivation δk is denoted δN

k and the index i is written
δN
k,i

Ak+1 = δN
k,0 (7)

δN
k = {x : x ∈ δk, x ∈ N}

and the initial derivation starts with the start symbol, δ0 = S ⇒ A0 = S.
The purpose of this paragraph is to show the discrepancy in codons used and

integer input length. The derivation step k indicates the current index in I as well
as the number of times the genotype C is wrapped and reread from the beginning,
0 ≤ k ≤ |C|w, w ∈ N. The wrapping is expressed as the modulo of the genotype
length taken from the derivation step counter, k and gives the chromosome index j ,

j = k mod |C| (8)

Moreover, note that a new input from codon cj is only read when the current rule,
Ak , is non-deterministic, i.e.

j :=
⎧
⎨

⎩

j, if |Ak| = 1

j + 1, if |Ak| > 1
(9)

This gives the relation between the used codon sequence and the input sequence,
i.e. the index for codon cj and integer input ik has j ≤ k, as shown in Eqs. (8) and
(9).

In order to avoid too much bias from the production choice mapping in Eq. (5) a
large enough difference between the max codon value and the number of production
rules is required, 2m � rmax . With this assumption the modulo operation in the
Eq. (5) makes all the probabilities uniform for the current rule pij = 1/|Ak|, pij ∈
P , with the probability to be selected 1/|Aj |. Otherwise there is a bias when the
modulo rule is applied to the codon which makes some ij more probable than
others [10, 25].4

The following analysis describes very generally what types of changes occur
when the chromosome changes, and how the grammar impacts them. The mapping
introduced the grammar by Eq. (5) increases the number of parameters from the
basic case described in Table 1. The mapping from codon to input is first extended
with a dependency on the current rule i.e the parent, which comes from the grammar.
If the current rule changes we call this a change of derivation context. Basic types of

4GE can be seen as a PCFG (Definition 4 on page 112), where all the probabilities are uniform,
i.e. the probabilities are determined by the number of production choices for each non-terminal,
pij = 1/|ri∗|. A bias towards productions rij can be achieved by multiple identical production
choices in the solution grammar rules.
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Table 2 Codon change, current rule and production choice type change

Type Production choice (i) Codon (c) Parent (A)

Change/redundant i �= i′ c �= c′ A �= A′

Change/redundant i �= i′ c = c′ A �= A′

Change/redundant i �= i′ c �= c′ A = A′

Redundant i = i′ c �= c′ A = A′

No change i = i′ c = c′ A = A′

Deterministic neutral mapping and dependency impact. The input i denotes production choices, c

the codon value and A the current rule. Change can occur, depending on the grammar

change to the production choice are shown in Table 2. The dependency introduced
by the current rule sets the input in a context where the position of the integer
value is important, which makes the table itself not directly applicable to GE.
Change/redundant represents the types that occur due to the position dependency.
Furthermore, in BNF form the grammar can have duplicated rules. This leads to
the possibility of change occurring, depending on the grammar, in three of the five
cases. The number of cases where change can be directly caused by a codon change
is two. An example of a grammar that would have a maximum probability of change
would be one without duplicated rules or production choices, since then there would
be no redundant changes.

3.1.2 Genotype to Phenotype: Integer Sequence to Word

For GE, one defining aspect is the redundancy in the mapping (many-to-one).
With the grammar mapping in GE it is not guaranteed that the language the
grammar produces will be able to produce all possible solutions. The mapping
ζ : 〈Z2m, . . . ,Z2m〉 → � from the chromosome in genotype space to the sentence
in the solution space generates a solution (sentence) in the language generated by the
grammar ψ ∈ L(G) ⊆ 
∗. This is a property of the grammar and allows declarative
bias to parts of the solution space. Ideally the grammar biases to a subset of the
solution space, V ∗ ⊆ � where an optimal solution exists. If there is no knowledge
of which solutions should be constrained the grammar can cover the entire solution
space, V ∗ = �. Of course, it should be avoided to constrain the grammar to a region
without optimal solutions. Finally, the mapping ζ of GE ζ : 〈Z2m, . . . ,Z2m〉 → �

is many-to-one (depending on �).
The space of derivation trees is denoted D. The input sequence can be written as

a derivation tree D

v : 〈Zr 〉 × G → D, v(I, 〈G,P 〉) = D (10)

where v is one-to-many if regarded out of the context dependency. In graph theory
a tree D is a directed graph without cycles and is the ordered triple of a set of
vertexes (or nodes), a set of edges and a mapping from the set of edges to ordered
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Table 3 Codon change, production choice, current rule and next rule type change

Type Rule (Ak+1) Codon (cj ) Parent (Ak) Production choice (i)

Change Ak+1 �= A′k+1 cj �= c′j Ak �= A′k i �= i′

Delayed/redundant Ak+1 = A′k+1 cj �= c′j Ak �= A′k i �= i′

Change Ak+1 �= A′k+1 cj = c′j Ak �= A′k i �= i′

Delayed/redundant Ak+1 = A′k+1 cj = c′j Ak �= A′k i �= i′

Change Ak+1 �= A′k+1 cj �= c′j Ak = A′k i �= i′

Delayed/redundant Ak+1 = A′k+1 cj �= c′j Ak = A′k i �= i′

Redundant Ak+1 = A′k+1 cj �= c′j Ak = A′k i = i′

No change Ak+1 = A′k+1 cj = c′j Ak = A′k i = i′

The table shows the deterministic neutral mapping and dependency impact. The interval for change
for the eight cases is between three cases and six cases. Delayed/redundant implies that the change
might be delayed since the expanded non-terminal is the same

pairs of vertexes D = 〈γ, ε, υ〉. The transformation from input to production
rule, v(I, 〈G,P 〉) = D. When studying how a grammar reacts to changes in
Table 3 the change in a codon and how it is related to the production choice are
shown. The interval for change for the eight cases is between three and six cases.
Delayed/redundant is indirect since it implies that the change might be delayed since
the expanded non-terminal is the same. When reading from left to right a delayed
change occurs in right recursive grammars A → Aα. Delayed implies that the
change in output (phenotype) might be delayed since the expanded non-terminal
is the same.

Preservation from a delay or shift should occur when the parent is not the same,
but the rule Ak+1 is, i.e. when there has been a previous change but the output at
this point stays the same.

The derivation tree D generates a derivation δT via a many-to-one mapping
g (depending on the grammar g it can be one-to-one), i.e. the derivation tree is
collapsed and the leaves read from left to right give the phenotype, or the derivation
at the last step T , δT . The space of grammar symbols is V∗

g : D → V∗, g(D) = δT (11)

The mapping from g has the same properties as in Table 1. In the step from the
final derivation to a solution (phenotype) k : V∗ → �, k(δT ) = ψ

ψ =
⎧
⎨

⎩

δT , if δT ∈ 
∗

Undefined, otherwise
(12)

Note that we assume that the sentences that are created by the grammar are defined
in the solution space 
∗ ⊆ �.
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3.1.3 Output to Fitness Value

The phenotype, ψ is assigned a real value by evaluating it with a fitness function,
h : � → R, h(ψ) = φ. It is difficult to generalize the properties of a fitness
function; the mapping is often many-to-one, but ideally the fitness function should
map from the phenotype space to the real values one-to-one and onto.

h(ψ) =
⎧
⎨

⎩

φ, if ψ ∈ �

φmin, if � is Undefined
(13)

This gives individuals that were not mapped completely minimum fitness, φmin. The
entire process in this section is shown in Fig. 1 on page 114.

Combining Eqs. (3), (11) and (13) for each input codon sequence gives the
following expression for mapping and evaluating GE, see Fig. 1 on page 114. Given
a grammar, and probabilities of production choices in the grammar and codons, a
fitness value φ is calculated as

φ = h(k(g(v(m(f (C), 〈G,P 〉), 〈G,P 〉))) (14)

3.2 Representation Spaces in GE

The GE evaluation, consisting of input-output mapping and fitness assignment, can
be described with the following spaces for the individual, showing that there is a
redundant (many-to-one) mapping between more than one pair of spaces. Changed
values are denoted by ′, e.g. after a change to chromosome C the new chromosome
is C′. �(x, x′) = y, y ∈ R denotes a function measuring a difference. The spaces
in GE where changes are examined are:

1. The chromosome which has chromosome changes, 0 < �C(C,C′)
2. The production choice sequence of integers has changes, 0 ≤ �I (I, I

′)
3. The derivation tree has changes, which are grammar dependent, 0 ≤ �D

(D,D′) i.e. there are grammars that generate identical derivation trees
4. The phenotype changes are the changes in the derivation tree leaves 0 ≤ ��

(�,� ′)). In other words, there are grammars where different derivations give
the same phenotype.

5. The fitness changes, which are �φ(φ, φ′) ∈ R, different phenotypes can have
the same fitness.

In GE, there is redundancy in more than one of the mappings; one point clearly
shown is the impact of the grammar both on the input and the derivation, i.e. N and
R, and on possible phenotypes ψ ∈ 
∗.

A canonical EA is presented in [2]: one addition here is the mapping part,
Eq. (11). A population is a vector of individuals, where the individuals are defined
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by their chromosomes C, � = [C0, C1, . . . ]. The difference between populations
�(�,�′) is created by the different operators, where each is operating on either a
single individual, on pairs or on the entire population. Replacement of individuals
in a population is denoted by ρ, when two populations, �,�′ are joined and a
population, �′′ is returned:

ρ : 〈Z2m, . . . ,Z2m〉 × 〈Z2m, . . . ,Z2m〉 → 〈Z2m, . . . ,Z2m〉, ρ(�,�′) = �′′
(15)

Selection in the population is denoted ς and operates on the fitness values φ. This
value is used to set the selection probability of the individual. The fitness values
belonging to individuals are operated on by ς which takes a fitness value and returns
a selected individual.

ς : 〈R, 〈Z2m, . . . ,Z2m〉〉M → 〈Z2m, . . . ,Z2m〉, ς(x) = C (16)

From other GE operators are mutation, μ, which takes a codon and returns a
codon:

μ : 〈Z2m, . . . ,Z2m〉 → 〈Z2m, . . . ,Z2m〉, μ(C) = C′ (17)

and crossover, ξ which takes a pair of individuals and returns a pair,5

ξ(C0,C1) = [C′
0, C

′
1]

ξ : 〈Z2m, . . . ,Z2m〉 × 〈Z2m, . . . ,Z2m〉 → [〈Z2m, . . . ,Z2m〉, 〈Z2m, . . . ,Z2m〉]
(18)

The full canonical GE with all the components in the system is created by
combining mapping equation (14), crossover equation (18), mutation equation (17),
selection equation (16) and replacement equation (15).

4 Theory of Disruption in GE

In this section we ask the question: what happens to the output (phenotype) when
there is a change in the input (genotype) and a CFG mapping is used in GE? The
mapping of GE introduces redundancies by Eq. (5) and dependencies on previous
input and the parent in the derivation tree, as well as the design of the grammar.
These properties have effects on the preservation of the derivation; often the changes
can be quite large, something which in GE is called a “ripple”, for the multiple
changes that can occur during e.g. mutation or crossover [13].

5It is possible to create crossover operators that only return a single individual.



Theory of Disruption in GE 121

In Sect. 4.1 change in the input to the grammar is examined. The question of
change as an expansion from the new start symbol in the sub-derivation tree, for all
unexpanded non-terminals in the derivation, is also raised in Sect. 4.2. Finally, in
Sect. 4.3 an attempt is made to formulate a schema theorem to quantify disruptions,
inspired by [23].

4.1 Change in the Chromosome

The key to understanding changes in GE are the dependencies that occur due to the
sequential use of the chromosome and mapping. Here we will examine changes in
the different stages of the GE mapping.

4.1.1 Codon Change

Consider a single change that could be performed by integer flip mutation of a codon
in the codon input sequence and where X is a discreet random variable, c′j = X,
X ∈ [0, 2m − 1]. This would change the old chromosome C into the new
chromosome C′ = 〈c1, . . . , c

′
j , cj+1, . . . , cn〉, n = |C|.

Let Y be a continuous random variable in [0, 1] and pmut the probability to
change per codon. The events of codon change and mutation are two separate
events. First a mutation event occurs and then the codon value change event,
depending on the mutation event. The probability that mutation will happen is
pmut = p(Y ≤ pmut ), 0 ≤ pmut ≤ 1.

Definition 12 (Codon Change) The event that the codon changes when mutation
occurs, is the probability of the codon changing multiplied by the mutation
probability:

p(codon change) = p(c �= c′) pmut

��
The uniform probability for a codon to be different can be written as

p(c �= c′) = 2m−1
2m , since there are 2m integer values for X and 2m − 1 are different.

When looking at the entire chromosome the probability of a chromosome to not
change is dependent on the chromosome size, the mutation rate and the possible
codon values. This probability can be written as:

p(C = C′) =
|C|−1∏

j=0

(1− pmutp(cj �= c′j ))
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4.1.2 Integer Production Choice Change

For the integer production choice sequence we get the following.

Definition 13 (Integer Production Choice Change) The event that the derivation
changes when mutation occurs and the changed codon changes the production
choice in the input, is the probability of input changing multiplied by the mutation
probability:

p(production choice change) = p(i �= i′) p(c �= c′) pmut

��
This states the fact that the probability of not changing is the product of
the mutation probability and the number of productions in the rule: p(i �= i′) =
pmut

|Ak |−1
|Ak |

2m−1
2m .

The probability μ(n) for an integer production choice sequence of length
n ≤ |I | to not change (I = I ′) when a uniform mutation rate pmut is applied
to the chromosome is the probability of the mutated codon c′j selecting the same
production. Using Definition 13,

μ =
n∏

j=0

(1−p(production choice change)) =
n∏

j=0

(1− pmut p(ij �= i′j ) p(c �= c′))

(19)

The mapping dependency creates the possibility of context changes, i.e. the
current rule in the tree changes, which means that the codons are not choosing the
same production choices. It is the dependency on previous choices and on the size
of the sub-sequence which gives the possible multiple output changes given a single
input change. In CFGs the choice of production is only dependent on the current
rule. With a grammar the probability of maintaining a sub derivation beginning at
zero given a change is p(ij = i′j |i0 = i′0, . . . , ij−1 = i′j−1) =

∏j

k=0 p(ik = i′k),
taken from Definition 5.

Definition 14 (Context Change) In a grammar without duplicate rules the context
changes if the parent (non-terminal) changes. ��

A context change in our notation is Ak �= A′k . The codon selecting the parent
is influenced by the sizes of previous subtrees in the derivation, since changes in
subtree sizes will change the codon used for mapping.

Furthermore, Definition 13 gives only an upper bound for no change in the
phenotype via mutation, since there are grammars which give the same phenotype
even though the production choice sequence has changed. This is an example of
redundancy created by the grammar. The probability for the phenotype of the indi-
vidual not to change when a mutation event has occurred is 0 ≤ p(ψ = ψ ′) ≤ μ.
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<S>::=<A>|<B>|<C><B><C>
<A>::=a|b
<B>::=c|<D><E>|d
<C>::=g|h
<D>::=i|j
<E>::=k|l|m

Grammar 1 Grammar for Example 1

One question that has been raised several times regarding GE is that the sequen-
tial input and deterministic mapping will create multiple changes in production
choice sequence from one single change in the genome, i.e. a ripple [13, 17] as
empirically investigated by [4]. The following section helps to show that each
element in the derivation has a higher probability of change the further the point of
genotypic change is from the root of the derivation tree, since there is a dependency
on previous choices and parents.

4.1.3 Derivation Change

The probability for no change to occur in an integer production choice sub-sequence
decreases as the index of the codons, j , increases. That is, the longer the sequence
the higher the probability of change. Where μ(n) is the probability for an integer
production choice sequence of length n ≤ |I | to not change. This can be written as
μ(j − 1) ≥ μ(j), 1 ≤ j ≤ |I |. First, from Eq. (19) the probability of changing the
sequence is:

μ(j) =
j∏

k=0

(1− pmut p(ik �= i′k) p(ck �= c′k)) (20)

This gives μ(0) ≥ μ(1). we can induce that μ(j − 1) ≥ μ(j) from p(ck �= c′k) and
p(ij �= i′j ) ≤ 1, j ≤ |I |.

Note that for simplicity the deterministic choices in the grammar are collapsed.
In Example 1 on page 123 the effect on input with higher index in the sequence

I is shown.

Example 1 (GE Derivation Change) For the input codon sequence C = 〈44, 666,

13, 49, 606, 303〉 and mutation rate pmut = 0.1 and Grammar 1 f (〈G,P 〉, C) =
〈2, 0, 1, 0, 0, 1〉. Then the probability for i0 to change, from Eq. (20), is μ(1) =
1− 0.1 · 0.66 = 0.93 and for i3 it is:

μ(3) = (1− 0.1 · 0.66)(1− 0.1 · 0.5)(1− 0.1 · 0.66)(1− 0.1 · 0.5)

= 0.79



124 E. Hemberg

The probability for the derivation tree root to change, from Eq. (20), in δ0 is 0 and
for δ3:

μ(3) = (1− 0.1 · 0.66)(1− 0.1 · 0.66)

= 0.90

��
Another example is the probability to change the symbol corresponding to the

root which is lower than the ij corresponding to any succeeding input, if the selected
production ij has the same number of productions as other non-terminals. Thus,
there exists a possibility to reach anywhere in the search space which is less or
equal to pmut at the first codon.

To summarize, the linear input sequence and the CFG make a change at the end
of the derivation more probable than changes in the beginning. This section has
established how changes in the genotype affect the phenotype for GE and has also
given bounds for the disruptions of the derivation.

4.1.4 Change Grammar Design

This section studies design of grammars that reduce ripple changes by a analysing
derivation trees and their probability to change the context of the mapping. We
extend previous work on grammar design and how it should be informed by a theory
of change. First we define a term in a GE derivation regarding unexpanded non-
terminals in the derivation sequence or tree and call them ripple sites.

Definition 15 (Ripple Site) Ripple sites are unexpanded non-terminals in the
derivation after the current non-terminal. If the derivation δk = αAβ, α ∈ 
∗,
A ∈ N, β ∈ V ∗

N>0, where a set containing at least one non-terminal is V ∗
N>0 = {x :

∃x ∈ N, x ∈ V ∗}, it contains at least one ripple site. ��
We denote the number of ripple sites for derivation δk = αAβ as |βN |,
βN = {x : x ∈ N, x ∈ β}

A previous study describe disruptions and the possibility to reduce the number of
non-terminals and rules, in order to facilitate schema propagation in Grammatical
Genetic Programming [23]. This is also discussed in a paper where the aim is to
reduce the number of such ripple sites in the derivation tree by limiting the number
of non-terminals in the grammar, although it is not general and it should be noted
that not all grammars are reducible in this way [11]. The use of recursive rules
prevents generalization for grammars to produce the same language with a reduced
grammar.

For GE the disruption to the input I from terminals and non-terminals can be
given a lower bound. The lower bound is related to the number of edges in the
derivation tree, which is the number of input production choices. Let |R
(D)| be
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the number of inputs in a derivation subtree coming from I . Then the number of non-
terminal productions, |n|, choosing productions with only terminals in the derivation
tree is:

|n| = |I | − |R
(D)| (21)

In Example 2 there is an example of different grammars for the same language
building different derivation trees, thus affecting the degree of change in the
derivation tree if the input codon sequence is changed.

Example 2 (CFG Designs) This example shows the effect of different numbers of
non-terminals. Note that the probabilities for the words generated by the grammar
will not be the same in the different grammars. First we have the grammar

<S>::=<A><C>|<C><C>
<A>::=<B>|<C>
<B>::=c|d
<C>::=e|f|g

with C = 〈0, 1, 1, 0〉, I = 〈0, 1, 1, 0〉, |n| = 2, |I | = 4, |R
(D)| = 2. This can be
rewritten as

<S>::=ce|cf|cg|de|df|dg|ee|ef|eg|fe|ff|fg|ge|gf|gg

with C = 〈6〉, I = 〈6〉, |n| = 1, |I | = 1, |R
(D)| = 0.

<S>::=<A><C>|<C><C>
<A>::=c|d
<C>::=e|f|g

with C = 〈1, 1, 0〉, I = 〈1, 1, 0〉, |n| = 1, |I | = 3, |R
(D)| = 2. Figure 2 shows
that it is the length of the input that is affected by the grammar. ��

The Eq. (21) gives us a lower bound for the probability to change if there is
a change in the chromosome and if a rule with non-terminals in the productions
is changed. The probability of changing a non-terminal such that the derivation
tree length |D(ij )| changes is p(ij �= i′j )(|I | − |R
(D)|). For GE 1/2 is the
highest production choice probability, since if there is only one production it is
deterministically chosen. Moreover, a lower bound is given if there are no mixed
rules, a rule with production choices that are not only terminal. Thus, a grammar
that is as compressed as possible, and which allows for a language with the desired
sentences will be the least susceptible to disruption. A caveat is that such a grammar
might not be the most intuitive to write.

4.1.5 Multiple Changes in the Chromosome

The single disruption analysis in Sect. 4.1 is used as a basis for analysis of multiple
disruptions. This helps us to understand crossover. A single point crossover can be
considered as multiple changes occur in the codons after the crossover point.
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input mapping output

0 1 1 0 <S>

<A> <C>

(0) 0%2=0

<C>

(1) 1%2=1

e

(3) 0%2=0

f

(2) 1%2=1

fe

(a)

input mapping output

1 1 0 <S>

<C> <C>

(0) 1%2=1

f

(1) 1%2=1

e

(2) 0%2=0

fe

(b)

Fig. 2 Grammars with different numbers of rules. (a) Original. (b) Reduced

A single point crossover at point xo in the input codon sequence, 1 ≤ xo ≤ min

(|C|, |C′|) results in C = 〈c1, . . . , cxo−1, c
′
xo, . . . , c

′
n〉 and n = |C′|, C′ = 〈c′1,

. . . , c′xo−1, cxo, . . . , cn〉 and n = |C|. Here, only one child from the crossover is
considered. Change is considering the parent which contributed with the beginning
of the chromosome.

Definition 16 (Crossover Change) The probability for a crossover event on the
input to change the output can be written as 1− ξ(xo, n):

ξ = pxo

n∏

j=xo

p(ij = i′j ) (22)

��
Crossover behavior is similar to mutation but from the crossover point xo to the end
of the chromosome C, as regards Eq. (22), a longer chromosome makes disruptions
more probable. Note the similarity to p(ij = i′j |i0 = i′0, . . . , ij−1 = i′j−1) crossover
generating the same sequence as one parent.

4.2 Input Change and Output Preservation

It is known that one change in input can change the order of expansion in
the grammar completely, leading to multiple changes in output by changing the
size of the subtree rooted in the expansion. Two types of input changes have
been mentioned, single and multiple. The questions we now pose are: can our
understanding of the preservation of the derivation after a change be analyzed and
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classified further than the insight of the “intrinsic polymorphism”[13] of GE? If one
codon changes, how much does the context for the succeeding codons change? To
begin with we investigate those types of change on the input as shown in Sect. 3.1
on page 113 and the change effects that originate from them.

4.2.1 Change Effects

Given the redundant mapping and parent dependency in GE, a change to the input
will be one of two types: change or redundant.

Definition 17 (Redundant Change) Redundant changes occur when a change in
the codon does not result in a change in derivation ij = i′j , ci �= c′i , I = I ′, C �= C′.

��
Of course this also gives D = D′.

The change can be direct, the change in input is reflected in the corresponding
output, or dependent on the previous mappings. Here it is the grammar and the
mapping that determine the degree of redundancy after a change in the chromosome.
A preservation occurs when the input is the same, the codon is the same, but the
context (the previous derivations, i.e. the parents) is changed. Thus, a return to
the same output with the same input is preservation. This is different from when
preservation of output occurs from different input. Table 3 presents an overview
of the types of changes. The point is that each of the indirect or extended changes
are artifacts of the GE indirect mapping from a sequence, i.e. from the grammar.
Changes to the chromosome are all direct. The indirect encoding of GE allows for
indirect changes, i.e. parts not directly connected with the change in the original
output are affected by the mapping to the new representation. Both the indirect and
direct changes are deterministic, being properties of the encoding.

When any of the changes occur there will be a change effect. See Table 4 for
an overview of the effects of change. The definitions of change effects are based
on subtree size |D(Ak)| from where the change occurs and the number of ripple
sites |βN | at that point in time (derivation) when we are reading the changed codon.
The argument for this definition comes from the fact that changes are based on
codon changes and/or parent change. Therefore, if a subtree size changes the codons
used to determine the other subtrees at the potential ripple sites, the new derivation
subtree size will have changed from the original tree. Thus, this will lead to the
possibility of different codons for deciding production choices from the unexpanded
non-terminals at the ripple sites.

Some change effects can occur in sequence since the derivation tree has
maintained some of its original structure. The change effect occurs as soon as there
is a change which is not redundant. A branch effect can be followed by another
branch effect. As seen in the definition a branch effect can also be followed by
the special case of a branch terminal effect. Within a change effect there can be
other change effects. The ripple tail effect is when the tail end of the tree changes.
This includes the special case where the root node changes. The effect in ripple
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Table 4 Derivation tree change effects for the derivation δ = αAβ, α, β ∈ V ∗ with derivation
tree D(A)

Effect Subtree size (|D|) Ripple sites (βN )

Ripple (R) |D| �= |D′|, |βRC
N | = 0 |βN | > 0

Ripple ripple (RR) |D| �= |D′|, |βRC
N | = 0 |βN | = 1

Ripple contained (RC) |D| �= |D′|, |βRC
N | > 0 |βN | > 1

Ripple tail (RT ) |D| �= |D′| |βN | = 0

Branch (B) |D| = |D′|
Branch terminal (BT ) |D| = |D′|, |D| = 1

The change effects are dependent on if the subtree changes size, then it is either a ripple or a branch

<S>::=<A>|<B>|<S><C>
<A>::=<B>|<C>
<B>::=c|d
<C>::=e|f|g

Grammar 2 Grammar for demonstrating branch change in Fig. 3 the change is from Fig. 3a to b

contained is the case when a ripple can be limited by canceling out the change in
subtree size on the first ripple site by the same size from preceding ripple sites,
thus leaving the next site unchanged. That creates a possibility to isolate ripples
to subtrees, if they occur at a position with more than 1 ripple site. When the
number of ripple sites is less than 2 the ripple cannot be contained, as with the
ripple tail effect. |βRC

N | denotes the number of subtrees which cancel each other out,
βRC

N = {∃n ∈ [2, |c|] : ∑n
i=1 |Di | = ∑n

i=1 |D′
i |}.

These definitions allow some sequences of change effects to be classified. If a
branch effect or a branch terminal effect occurs, all of the other change effects can
occur afterwards. If a contained ripple effect occurs and the difference in subtree
sizes for the ripple sites is 0 and there are ripple sites left, all of the other types of
changes can occur.

Preservation of output can occur from two sources, either the context of the input
is preserved or a different input generates the same output as was found in the
original. To identify the other type of preservation the grammar must be examined.

First, what happens when the derivation changes? Since the sequence is known
some inferences about what is preserved can be made. The preservation from the
root can be shifted from the site of the initial change before the expansion of the
start symbol S = Ak , for all the unexpanded non-terminals. A shift refers to when
the input has been changed but the output only changes at a subsequent position. The
shift can occur with more than one step from where the codon changed. The same
applies for crossover but the codons are also changed, which makes preservation less
probable. An example of branch changes is shown in Fig. 3a, the original individual,
which use Grammar 2, can be rewritten after a branch change to Fig. 3b.
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input mapping output
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f

(8) 1%3=1
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f

(7) 1%3=1

d

(6) 1%2=1

gdfff

(a)

input mapping output
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g
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f

(8) 1%3=1

e
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<B>
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d
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gedff

(b)
input mapping output
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<S> <C>

(0) 2%3=2

<C> <S>
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f
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g

(2) 2%3=2

<A> <C>
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input mapping output

2 1 2 2 <S>
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c

(2) 2%2=0

cg

(d)

Fig. 3 Example individual and different changes, given Grammar 2 (a) Original. (b) Branch. (c)
Ripple with preservation. (d) Ripple

4.2.2 Branch Change

Subtree sizes are also important for how much the context will change.

Definition 18 (Branch) The change can be contained to a branch. If the change
affects D(Aj ) and the size is maintained |D(Aj )| = |D(A′j )|. ��
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This definition leads to all terminal changes being classified as branch changes. An
example of a branch change is shown with the grammar from Example 2 is begin
used again in Fig. 3b.

The probability for a branch not to change is the same as Eq. (19), but at different
intervals and indices:

p
|D(ij )|
m

|D(ij )|∏

j=k

p(ik = i′k), 0 ≤ j ≤ k, k ≤ n

The branch changes can be described and be given probabilities to occur. These
changes in the derivation interval can occur multiple times, thus changing branches
but still maintaining subsequent sequences. The parents have to be the same and
the preceding branches must be of the same size. If the size of the subtree is one,
l = 1 the change is in a terminal. π(ij ) is the set of parents for j . Probabilities for a
branch are:

∏

k∈π(ij )

p(ik = i′k)
∏

k /∈π(ij )∩k<j

p(|D(ik)| = |D(i′k)|) (23)

This can also be written for the derivation, where there is a non-terminal in the
derivation at the point of change, δk = αAβ, α ∈ 
∗, A ∈ N, β ∈ V ∗

N>0 and
|D(Ak)| = |D′(Ak)|,D(A) �= D′(A).

Apart from changes that preserve the subsequent subtrees there are changes that
can ripple through the entire derivation tree.

4.2.3 Ripple

Definition 19 (Ripple) The context changes if the branch size changes and if there
is more than one ripple site. ��
Example 3 (Ripple Change) The grammar from Example 2 is used to show the
change from Fig. 3a–d. Or with e.g. δk = α0A0α1A1β, α ∈ 
∗, A ∈ N, β ∈ 
∗.

��
Thus, the codons change mapping in the new context if cj �= c′j and

|D(Aj )| �= |D(A′j )|, where D(Aj ) is the sub derivation tree starting with ij .
For ripple a shift can occur due to the input codon sequence and the grammar.

The preserved subtrees appear from each non-terminal expansion of the input codon
sequence; it is difficult to speak of a preservation of subtrees since these effects
could be purely random.

Example 4 (Ripple Contained) The grammar from Example 2 is used to show the
change from Fig. 3a–c. There is a preservation of the output after a ripple site, even
though the subtree where the change occurred has a different size. ��
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The number of productions can guarantee or prevent context change, with the
order of the productions being important. The derivation context comes from the
parent Ak = A′k and will be unchanged as long as ij = i′j . For ij /∈ π(ij )

only |D(ij )| = |D(i′j )| needs to hold, meaning there can be a shift even if
|D(ij )| �= |D(i′j )|. For |D(ij )| �= |D(i′j )| a branch is maintained if |cj − c′j |
mod|Ak| = 0 or cj = c′j , and |Ak| = |A′k|, or has a probability to not change
|cj − c′j | �= 0 and |Ak| �= |A′k|. Take into account p(|ci − c′i | mod|Ak| = 0) =
1/|Ak|.

The grammar reduction technique from [11] can be further analyzed from the
defined change properties. An example of how a grammar used for low disruption
for crossover might be more sensitive to mutation is shown in Example 5.

Example 5 (Reduced Grammar) The following grammar will exchange material
in the same context from crossover events and create a branch change from the
crossover point.

<R>::=a|b|<R>a|<R>c

And mutation will always only change one production, thus using Eq. (21) the
change is either single terminal change (subtree size 1), expansion or contraction.

��

4.3 Disruption in a GE Population

It is often argued, supported by a schema theorem, that the reason why GAs
work is that small fit parts of the genotype are propagated during the evolutionary
process [6]. The GA schema theorem has been studied for many different EA
systems. For example, one study aims to generalize the building block hypothesis
for variable-length strings and program trees [14]. Further, another investigates a
schema theorem for CFGs [23].

Evolvability is the ability of the genetic operator/representation to produce
offspring fitter than their parents [1]. There have been studies to generalize the GA
schema theorem with Price’s theorem [2]. Price’s theorem regards the covariance
between parental fitness and offspring traits for informing how selection drives
evolution.

4.3.1 GE Schema

A schema is a template containing zero or more non-terminals, matching multiple
valid individuals. Following [23], an attempt to describe how schemas are propa-
gated during evolution is made in this section. When a derivation δ represents a
schema, a “do not care” symbol, often *, used in GA and GP schemata, is not
needed, since a sentential form is a valid derivation [24]. The derivation string is
expressive enough, where non-terminals denote unexpanded subtrees. From [23]:
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Definition 20 (Schema in CFG) A schema H for a Context-Free Grammar is the
sub derivation tree H = {x ∗−→ β}, x ∈ N, β ∈ V ∗ ��

In the schema, |H | is the length of the schema i.e. subderivation tree. H is rooted
in a non-terminal and the schema H can occur more than once in the derivation
D. Also worth noting is that the individuals that match the schema can differ in
size. The number of fixed symbols in a schema is called the order of the schema.
We investigate the probability of a schema to not be disrupted during a generation.
This means that the probability of crossover and mutation to change the schema are
studied, as well as the probability of selecting a schema using fitness proportional
selection.

Schema Disruption Due to Crossover The probability of a derivation tree D

containing H to not change due to crossover is:

p(H = H ′) =
he∏

j=xo

p(ij = i′j ) (24)

where he is the index in D where H ends and the crossover point xo, 0 ≤ xo ≤ |H |.
The probability to change the schema is κ = 1 − p(H = H ′), 0 ≤ κ ≤ 1,
see Eq. (22). The comparison is made with the parent that contains the start of the
chromosome.

Note that cases of redundant grammars are ignored here. Moreover, with the
change effect “branch” where the change occurs in the unexpanded non-terminal
region the schema will still be maintained.

Schema Disruption Due to Mutation The probability of a derivation tree D

containing H to not change due to mutation is:

p(H = H ′) =
he∏

j=ms

p(ij = i′j ) (25)

With m the point of mutation and 0 ≤ m ≤ |H |. The probability to change is
� = 1− p(H = H ′), 0 ≤ � ≤ 1, see Eq. (19).

We define |DH | as the number of occurrences of schema H in the derivation tree
D and the average disruption due to crossover K and mutation M , i.e. the number of
schema in each individual in the population times the probability of disruption due
to crossover or mutation divided by the total number of schema in the population.
This can be written as: (where � is the population)

K =
∑

D∈� κ|DH |
∑

D∈� |DH | , 0 ≤ K ≤ 1 (26)

M =
∑

D∈� � |DH |
∑

D∈� |DH | , 0 ≤ M ≤ 1 (27)



Theory of Disruption in GE 133

The fitness of derivation D is fD and the average schema fitness for fitness
proportional selection and replacement ρ is:

ρ = f H

f
(28)

f H =
∑

D∈� fD|DH |
∑

D∈� |DH | (29)

f =
∑

D∈� fD

|�| (30)

Where f H is average fitness of a schema in a population and f is the average fitness
of the entire population.

Combining Eqs. (27), (26) and (28) it is possible to set up bounds for the
propagation of schema H due to crossover, mutation, and replacement and selection
over time. That is, a schema is propagated if it is not disrupted by mutation and
crossover and fit enough to be selected by proportional selection. We use pxo as the
probability of crossover and pmut as the probability of mutation. (1−(1−pmut )

|H |)
denotes the probability that a mutation occurs within the derivation tree needed to
describe the schema.

Theorem 1 The number n(H, t) of schema H to be found at time t:

n(H, t) ≥ n(H, t − 1) · ρ · (1− pxoK) · (1− (1− (1− pmut )
|H |)M) (31)

��
Proof From combining Eqs. (28), (26) and (27).

n(H, t) = n(H, t − 1) · ρ (32)

n(H, t) ≥ n(H, t − 1) · ρ · (1− pxoK) · (1− (1− (1− pmut )
|H |)M) (33)

�
Note that a lower bound for schema disruption is the probability that a random

derivation gives the schema p(H) = ∏|H |
i=0 p(Hi), thus reoccurring by random

chance. That is a crossover or mutation reintroduces the schema. This is important
since it shows the impact of the grammar for allowing schema.

5 Discussion

The regularity of the grammar can have obvious effects on the change impacts, by
guaranteeing, delaying or making the change redundant. Mixed rules, i.e. rules with
both non-terminal and terminal productions, will make the analysis more difficult.
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Moreover, mixed production choices, i.e. productions with both terminal and non-
terminal symbols, further complicate analysis. Therefore, the use of normal forms,
e.g. those of Chomsky or Greibach [8], could facilitate the analysis.

From the definitions of change effects we see that the non-terminal distribution of
I is important, especially for one-point-crossover. With this terminology a context-
sensitive operator [7] would guarantee a branch change and insert or replace a
subtree so that everything in I ′ would be within the same context as in I . From
experiments regarding the positional effect of crossover and mutation in GE there
is support for the idea that events occurring in the first position of the genotype are
more destructive, but they can also be the most constructive, regarding fitness [4].
The ripple effect means that a few changes to the chromosome can be propagated to
multiple changes to the phenotype. This affects the local search capabilities of GE
and the causality principle.

The propagation of schemas is bounded by the operators and the expansion of
non-terminals. One view of GE is that the integer sequence I tends to converge
from left to right, since the schemas are most likely kept at the beginning of the
derivation. Another part is the probability of derivations from N which can contain
schemas. This means the re-introduction of schemas due to the bias in the grammar.

6 Conclusions and Future Work

A formal description of GE is proposed and this provides us with the tools to analyze
the impact of changes on the genotype-phenotype mapping of GE. With an improved
understanding of how the algorithm works, more efficient search operators can
be designed. The study of changes has revealed a lower bound for the disruption
probability in a grammar and thus given some pointers for grammar design. In
other words, the fewer non-terminals it contains, the less susceptible it will be to
disruption. The effects of a change on the input were labeled. Furthermore a schema
theorem for canonical GE has been formulated.

Future work will investigate the availability of sequences in the population and
the availability of the bias in the search, even if the sequences are not directly
preserved there will be a bias from the genetic material available. Here the grammar
should affect the search, as discussed in the mod and bucket [10].
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Structured Grammatical Evolution:
A Dynamic Approach

Nuno Lourenço, Filipe Assunção, Francisco B. Pereira, Ernesto Costa,
and Penousal Machado

Abstract Grammars have attracted the attention of researchers within the
Evolutionary Computation field, specially from the Genetic Programming
community. The most successful example of the use of grammars by GP is
Grammatical Evolution (GE). In spite of being widely used by practitioners of
different fields, GE is not free from drawbacks. The ones that are most commonly
pointed out are those linked with redundancy and locality of the representation. To
address these limitations Structured Grammatical Evolution (SGE) was proposed,
which introduces a one-to-one mapping between the genotype and the non-
terminals. In SGE the input grammar must be pre-processed so that recursion
is removed, and the maximum number of expansion possibilities for each symbol
determined. This has been pointed out as a drawback of SGE and to tackle it we
introduce Dynamic Structured Grammatical Evolution (DSGE). In DSGE there
is no need to pre-process the grammar, as it is expanded on the fly during the
evolutionary process, and thus we only need to define the maximum tree depth.
Additionally, it only encodes the integers that are used in the genotype to phenotype
mapping, and grows as needed during evolution. Experiments comparing DSGE
with SGE show that DSGE performance is never worse than SGE, being statistically
superior in a considerable number of the tested problems.

1 Introduction

Grammars are widely used by computer scientists and researchers to represent
complex structures by specifying restrictions on general domains, thus limiting
the number of expressions that can be generated. The most common application
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is perhaps on the specification of the syntax of a programming language to define
things such as type restrictions and operators precedence. Grammars are also useful
to represent and describe interaction constraints between the different components
of a system. As such, it is not a surprise that grammars captivated the attention of
Evolutionary Computation (EC) researchers to help in the specification of problem
restrictions and constraints that guide the evolutionary process, specifically in
Genetic Programming (GP) [10].

One of the first GP proposals that used grammars to define the syntax and
control the search bias was introduced by Whigham with his Context-Free-Grammar
GP [22]. The introduction of grammars limited the form of possible solutions,
allowing the definition of an explicit structure through the use of the productions
of a grammar, and enabled the definition of constraints, ensuring that different
components of solutions are not mixed together.

The main achievement in Grammar-Based Genetic Programming (GBGP) came
with the introduction of Grammatical Evolution (GE) by Ryan et al. [15, 19],
which since then has become one of the most popular and widespread GP methods.
The main difference between CFG-GP and GE is related with how individual
solutions are represented. While the former relies on a derivation-tree based
representation, the latter uses a variable length linear integer string and a grammar
to map individuals from the search space into the problem space. This separation
between genotype and phenotype is usually seen as an advantage of GE over other
techniques, since it is possible to decouple the search method from the problem we
are solving, simplifying its application to different domains.

Despite the popularity of GE, some studies have shown that it has some
drawbacks. Firstly, GE suffers from high levels of redundancy. A representation is
said to be redundant when several different genotypes map in the same phenotype.
Secondly, GE has a low locality [18], i.e., how variations at the genotype level reflect
on differences at the phenotype level [6]. In a representation with high locality, a
small modification on the genotype usually results in a small modification on the
phenotype, nurturing the conditions for an effective sampling of the search space. If
this condition is not satisfied, the search performed by an Evolutionary Algorithm
(EA) tends to resemble that of a random search [17].

Over the years several modifications have been made to the original GE proposal
in order to overcome its limitations. The most recent one is called Structured
Grammatical Evolution (SGE), proposed by the authors in [12]. Its most noticeable
characteristic is having a one-to-one relationship between genes and the non-
terminals of the grammar being used. In order to allow a valid mapping, each
gene encodes a list of integers that represent the possible derivation choices for
the corresponding non-terminal. The structured representation of SGE, in which a
gene is explicitly linked to a non-terminal of the grammar, ensures that changes in a
single genotypic position do not affect the derivation options of other non-terminals.
In the aforementioned work we analysed and compared the properties of both SGE
and GE, and concluded that the new representation not only increases locality but
also reduces redundancy. These results justify the increased performance of SGE
over the traditional GE representation.
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Nevertheless, SGE has been criticised because we need to specify beforehand
the maximum levels of recursion in order to remove it from the grammar. In
this work, we introduce a new version of the SGE, called Dynamic Structured
Grammatical Evolution (DSGE), which addresses this main criticism. In this new
version we specify the maximum tree-depth (similarly to what happens in standard
tree-based GP), and the algorithm add the mapping numbers as required during the
evolutionary search. Thus, we do not need to pre-process the grammar to remove
the recursive productions. Additionally, we provide mechanisms to make sure that
the generated trees are always within the allowed limits. We show that the DSGE
version performs as good as the initial SGE algorithm, and in some cases it even
surpasses its performance.

This chapter is organised as follows: in Sect. 2 we present the background.
Next, in Sect. 3 we detail our new method: DSGE. In Sect. 4 we evaluate and
compare the performance of the new method with the vanilla version of SGE
in classical GP benchmarks, followed by a comparison of the two approaches
in the domain of NeuroEvolution (Sect. 5). Finally, Sect. 6 gathers the main
conclusions.

2 Background

Context-Free-Grammars (CFGs) have been widely used to represent and control the
search bias of EAs [14]. Formally, a CFG is a tuple G = (N, T , S, P ), where N is a
non-empty set of non-terminal symbols, T is a non-empty set of terminal symbols,
S is an element of N called the axiom, and P is a set of production rules of the form
A ::= α, with A ∈ N and α ∈ (N ∪ T )∗. N and T are disjoint. Each grammar
G defines a language L(G) composed by all sequences of terminal symbols (the
words) that can be derived from the axiom: L(G) = {w : S

∗⇒ w, w ∈ T ∗}. An
example of a CFG is presented in Fig. 1. In this section we describe the GE and SGE
approaches. For an in-depth review of the developments related with grammar-based
evolutionary methods the reader might refer to [14].

Fig. 1 Example of a
Context-Free-Grammar in the
Backus-Naur Form (BNF)

<start> ::= <expr><op><expr> (0)
| <expr> (1)

<expr> ::= <term><op><term> (0)
| (<term><op><term>) (1)

<op> ::= + (0)
| − (1)
| / (2)
| ∗ (3)

<term> ::= x1 (0)
| 0.5 (1)
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2.1 Grammatical Evolution

In Grammatical Evolution (GE) there is a separation between the genotype, i.e., a
linear string of integers, and the phenotype, i.e., a program in the form of a tree
expression. As a consequence, a mapping process is required to map the string into
an executable program, using the production rules of a CFG. The translation of the
genotype into the phenotype is done by simulating a leftmost derivation from the
axiom of the grammar. This process scans the linear sequence from left to right and
each integer (i.e., each codon) is used to determine the grammar rule that expands
the leftmost non-terminal symbol of the current partial derivation tree. Consider the
set of production rules defined in Fig. 1, where there are two options to rewrite the
left-hand side symbol <start>. In the beginning we have a sentential form equal to
the axiom <start>. To rewrite the axiom one must choose which alternative will
be used by taking the first integer of the genotype and dividing it by the number
of options in which we can derive <start>. The remainder of that operation will
indicate the option to be used. In the example above, assuming that the first integer
is 23, it follows that 23%2 = 1 and the axiom is rewritten as <expr><op><expr>.
Then the second integer is read, and the same method is used to the left most
non-terminal of the derivation. The complete mapping of an individual is showed
in Table 1. Sometimes the length of the genotype is not enough to complete the
mapping. When that happens the sequence is repeatedly reused in a process known
as wrapping. If the mapping exceeds a pre-determined number of wrappings, the
process stops and the worst possible fitness value is assigned to the individual.

The separation between the search space and the problem space is usually seen
as one of the biggest advantages of GE, allowing it to be easily used in different
problem domains. These characteristics is also appealing to practitioners of various
scientific domains, since they can easily use GE to solve their problems.

Table 1 GE mapping procedure that translates the genotype of an individual into a polynomial
expression (phenotype)

Derivation step Integers left

<start> [23, 7, 55, 22, 3, 4, 30, 16, 203, 24]
<expr><op><expr> [7, 55, 22, 3, 4, 30, 16, 203, 24]
(<term><op><term>)<op><expr> [55, 22, 3, 4, 30, 16, 203, 24]
(0.5 <op><term>)<op><expr> [22, 3, 4, 30, 16, 203, 24]
(0.5 / <term>)<op><expr> [3, 4, 30, 16, 203, 24]
(0.5 / 0.5)<op><expr> [4, 30, 16, 203, 24]
(0.5 / 1) + <expr> [30, 16, 203, 24]
(0.5 / 1) + <term><op><term> [15, 203, 24]
(0.5 / 1) + x1 <op><term> [203, 24]
(0.5 / 1) + x1 ∗ <term> [24]
(0.5 / 1) + x1 ∗ x1 []

Each row represents a derivation step. The used grammar is represented in Fig. 1



Structured Grammatical Evolution: A Dynamic Approach 141

GE it is not exempted from criticisms. One is concerned with its initialisation
procedure, which makes it difficult to create populations with valid individuals [16].
To overcome the initialisation problem, GE adopted a method similar to the one
proposed in GP [10]. Another criticism pointed at GE is concerned with its high
redundancy and its low locality. Rothlauf et al. in [18] showed that in approximately
90% of the time a change in the genotype does not change the phenotype. A second
important result of this work is related with the remaining 10% of the modifications.
Specifically, when the genotype suffers one mutation, changes of more than one
unit occur at the phenotypic level. This means that many genotypic neighbours
originate highly dissimilar phenotypes. One of the first proposals to increase the
locality of GE was by Byrne et al. [3, 4]. They proposed new mutation operators that
worked on the phenotypic level, which only changed the labels of the nodes in the
derivation tree.

2.2 Structured Grammatical Evolution

Structured Grammatical Evolution (SGE) is a recent genotypic representation aimed
at overcoming the locality and redundancy issues of GE. In SGE each gene is linked
to a specific non-terminal, and it is composed by a list of integers used to select the
expansion option. The length of each list is determined by computing the maximum
possible number of expansions of the corresponding non-terminal. This structure
ensures that the modification of a gene does not affect the derivation options of other
non-terminals, thus limiting the number of changes that can occur at the phenotypic
level, which result in a higher locality. The values inside each list are bounded by the
number of possible expansion options of the corresponding non-terminal. Therefore,
the mapping procedure does not rely on the modulo rule, avoiding the redundancy
associated with it.

As an example consider the grammar depicted in Fig. 1. The non-terminals set
is {<start>,<expr>,<term>,<op>}. Therefore, the SGE genotype is composed
by four genes, each one linked to one specific non-terminal. To determine the
length of the gene’s lists we calculate the maximum number of expansions of each
non-terminal. The <start> symbol is expanded only once, as it is the grammar
axiom. The <expr> symbol is expanded, at most, twice, because of the rule
<expr><op><expr>. The computation of the list size for <term> establishes
a direct dependence between this non-terminal and <expr>: each time <expr>
is expanded, <term> is expanded twice (in the two possible expansion options).
As the grammar allows a maximum of two <expr> expansions, it immediately
follows that the list size for the <term> gene is four. Following the same line of
reasoning, the list size for the <op> gene is 3. Thus, the list sizes for each gene
are: <start> : 1,<expr> : 2,<term> : 4,<op> : 3. To complete the list inside
each gene we take the number of derivation options cN of the corresponding non-
terminal, and assign a random value from the interval [0, cN − 1] to every position.
The <start>, <expr> and <term> symbols have cN = 2, whereas <op> has
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Fig. 2 Example of a SGE
genotype for the grammar
showed in Fig. 1

Genotype

<start> <expr>

[0] [0,1]

<term><op>

[2,0,3] [1,1,0,0]

Table 2 SGE mapping procedure that converts a SGE individual into a polynomial expression

Derivation step Integers left

<start> [[0], [0, 1], [2, 0, 3], [1, 1, 0, 0]]
<expr><op><expr> [[], [1, 0], [2, 0, 3], [1, 1, 0, 0]]
(<value><op><value>)<op><expr> [[], [0], [2, 0, 3], [1, 1, 0, 0]]
(0.5 <op><value>)<op><expr> [[], [0], [2, 0, 3], [1, 0, 0]]
(0.5 / <value>)<op><expr> [[], [0], [0, 3], [1, 0, 0]]
(0.5 / 1)<op><expr> [[], [0], [0, 3], [0, 1]]
(0.5 / 1) + <expr> [[], [0], [3], [0, 1]]
(0.5 / 1) + <value><op><value> [[], [], [3], [0, 0]]
(0.5 / 1) + x1 <op><value> [[], [], [3], [0]]
(0.5 / 1) + x1 ∗ <value> [[], [], [], [0]]
(0.5 / 1) + x1 ∗ x1 [[], [], [], []]

Each row represents a derivation step. The used grammar is represented in Fig. 1. The list of codons
represents the integers needed for expanding <start>, <expr>, <op> and <value>, respectively

cN = 4. Figure 2 shows an example of the genotype of a SGE individual. The
complete mapping of this same individual into a polynomial expression is depicted
in Table 2.

3 Dynamic Structured Grammatical Evolution

Dynamic Structured Grammatical Evolution (DSGE) is our novel GBGP approach.
It derives from SGE, and addresses its common criticism of having to remove the
recursion from the grammar beforehand. In this new version there is no need to
pre-process the grammar in order to compute the maximum tree-sizes of each non-
terminal symbol, so that intermediate grammar derivation rules are created to mimic
the recursion process. Another advantage of the new proposal is that all of the
genotype is used. Whilst in GE and SGE the genotype encodes the largest allowed
sequence, in DSGE the genotype grows as needed. In the next sections we describe
in detail the procedures needed to implement the DSGE.
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Algorithm 1: Random candidate solution generation
1: procedure CREATE_INDIVIDUAL(grammar, max_depth, genotype, symbol, depth)
2: expansion = randint(0, len(grammar[symbol])-1)
3: if is_recursive(symbol) then
4: if expansion in grammar.recursive(symbol) then
5: if depth ≥ max_depth then:
6: non_rec = grammar.non_recursive(symbol)
7: expansion = choice(non_rec)
8: if symbol in genotype then
9: genotype[symbol].append(expansion)

10: else
11: genotype[symbol] = [expansion]
12: expansion_symbols = grammar[symbol][expansion]
13: for sym in expansion_symbols do
14: if not is_terminal(sym) then
15: create_individual(grammar, max_depth, genotype, sym, depth+1)

3.1 Representation

Each candidate solution encodes an ordered sequence of the derivation steps
of the used grammar that are needed to generate a specific solution for the
problem at hand. The representation is similar to the one used in SGE, with one
main difference: instead of computing and generating the maximum number of
derivations for each of the grammar’s non-terminal symbols, a variable length
representation is used, where just the number of needed derivations are encoded.
Consequently, there is no need to create intermediate symbols to deal with recursive
rules.

To limit the genotype size, a maximum tree-depth needs to be defined. This
means that the trees that are being generated will grow until a certain limit.
To ensure that valid individuals are generated we need to change the initialisa-
tion and mapping procedures. These modifications are detailed in the following
sections.

3.2 Initialisation

Algorithm 1 details the recursive function that is used to generate each initial
solution. This procedure takes as input the following parameters: the grammar that
describes the domain of the problem; the maximum tree-depth; the genotype (which
is initially empty); the non-terminal symbol that we want to expand (initially the
axiom is used); and the current tree-depth (initialised to 0). Then, for the non-
terminal symbol given as input, one of its possible derivation rules is selected (lines
2–11) and the non-terminal symbols of the chosen derivation rule are recursively
expanded (lines 12–15) following a depth-first approach. However, when selecting
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Algorithm 2: Genotype to phenotype mapping procedure
1: procedure MAPPING(genotype, grammar, max_depth, read_integers, symbol, depth)
2: phenotype = “”
3: if symbol not in read_integers then
4: read_integers[symbol] = 0
5: if symbol not in genotype then
6: genotype[symbol] = []
7: if read_integers[symbol] ≥ len(genotype[symbol]) then
8: if depth ≥ max_depth then
9: generate_terminal_expansion(genotype, symbol)

10: else
11: generate_expansion(genotype, symbol)
12: gen_int = genotype[symbol][read_integer[symbol]]
13: expansion = grammar[symbol][gen_int]
14: read_integers[symbol] += 1
15: for sym in expansion do
16: if is_terminal(sym) then
17: phenotype += sym
18: else
19: phenotype += mapping(genotype, grammar, max_depth, read_integers, sym,

depth+1)
20: return phenotype

the expansion rule there is the need to check whether or not the maximum tree-depth
has already been reached (lines 3–5). If that happens, only non-recursive derivation
rules can be selected for expanding the current non-terminal symbol (lines 6–7).
This procedure is repeated until an initial population with the desired size is created.

3.3 Mapping Function

To map the candidate solutions genotype into the phenotype we use Algorithm 2.
This procedure is similar to the one used to generate the initial population but,
instead of randomly selecting the derivation rule to use in the expansion of the non-
terminal symbol, we use the choice that is encoded in the individual’s genotype
(lines 12–19). During evolution, the genetic operators might change the genotype
in a way that more integers will be necessary than the ones that we have available.
When this happens new derivation rules are selected randomly and added to the
genotype of the individual (lines 3–11).
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3.4 Genetic Operators

To explore the problem’s domain and therefore promote evolution EAs usually rely
on recombination and mutation operators to explore the search space, looking for
promising solutions for the problem being solved.

3.4.1 Mutation

The mutation operator is restricted to integers that are used in the genotype to
phenotype mapping and changes a randomly selected expansion option (encoded
as an integer) to another valid one, constrained to the restrictions imposed by the
maximum tree-depth. To do so, we first select one gene. Then, we randomly select
one of its integers and replace it with another valid possibility. Note that genes where
there is just one possibility for expansion are not considered for mutation purposes.
Figure 3 shows the application of the mutation operator.

3.4.2 Recombination

Recombination is used to recombine two parents to generate two offspring. The
crossover is the same introduced by [12]. It starts by creating a random binary
mask and the offspring are created by selecting the parents genes’ based on the
mask values. Recombination does not modify the lists inside the genes. This is

Mutation

[0] [0,1] [0,1,0,1] [1,3,1] [0] [1,1] [0,1,0,1] [1,3,1]

(a)

<start>

<expr> <op><expr>

<term> <op> <term><term> <op> <term>( )

/

( )

<start>

<expr> <op>

<term> <op> <term>

x - 0.5 x - 0.5 x - 0.5 x - 0.5

/

Before Mutation After Mutation

<expr>

<term> <op> <term> )(

(b)

Fig. 3 Application of the mutation operator. Panel (a) details the application at the genotypic
level, whereas panel (b) illustrates changes in the corresponding derivation trees. (a) Mutation
application. (b) Derivation trees
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Fig. 4 Application of the recombination operator. Panel (a) details the application at the
genotypic level, whereas panel (b) illustrates the changes in the corresponding derivation trees.
(a) Crossover application. (b) Derivation trees

similar to what happens with uniform crossover for binary representations. Figure 4
demonstrates the application of this operator.

4 Classical Problems

In this section we present the experimental results that we conducted to assess the
performance of the DSGE, conducting a relative comparison with its ancestor. We
rely on the version of SGE described in [12].
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Table 3 Experimental
parameters used in the
analysis for SGE and DSGE

Parameter Value

Num. runs 30

Population size 1000

Generations 50

Crossover rate 95%

Mutation rate 1
code size

Tournament size 3

Elite size 1%

SGE parameter Value

Recursion level 6

DSGE parameter Value

Max. Initialisation depth 6

Max. depth 17

4.1 Experimental Setup

All the results reported are averages of 30 evolutionary runs, to allow for a sound
statistical analysis. Considering that we are performing comparisons with only two
groups, we do not assume anything about the distribution of the data, and because
the initial populations of each method are different we rely on the Mann-Whitney
non-parametric test with a significance level α = 0.05. Since that we are performing
comparisons between only two groups, no p − value correction is needed. Note
that when statistical differences are found, we also report the effect size [5] of the
differences.

The numerical parameters used for the experiments performed with SGE and
DSGE are presented in Table 3.1 The codon size parameter stands for the number of
integers in the DSGE genotype.

4.2 Benchmark Description

The problems that were considered in the experiments are the Boston housing
symbolic regression, quartic symbolic regression, the 5-bit even parity, the 11-bit
Boolean multiplexer and the Santa Fe Ant Trail. All the problems consider the
minimisation of an error. For the regression problems, i.e., the Boston housing and
quartic, we used the Root Relative Squared Error (RRSE) which is 0 for a model
with a perfect fit. For the 5-bit parity and the 11-bit Boolean multiplexer we count
the number of test cases that were incorrectly predicted. Finally, for the Santa Fe

1The implementations of SGE and DSGE are available at: SGE—https://github.com/nunolourenco/
sge and DSGE—https://github.com/nunolourenco/dsge.

https://github.com/nunolourenco/sge
https://github.com/nunolourenco/sge
https://github.com/nunolourenco/dsge
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Ant Trail we consider the number of food pellets left after the maximum number of
steps has been achieved.

4.2.1 Quartic Symbolic Regression

The relevance of this problem as a GP benchmark is highly debated [13], but we
included it mostly for historical reasons. The aim is to approximate the function
defined by:

f (x) = x4 + x3 + x2 + x + 1 (1)

where x is sampled in the interval [−1, 1] with a step s = 0.1 The set of production
rules considered for this problem is:

<start> ::=<expr>

<expr> ::=<expr><op><expr>

| (<expr><op><expr>)

|<pre_op>(<expr>)

|<var>

<op> ::= + | − | ∗ | /
<pre_op> ::= sin | cos | exp | inv | log

<var> ::= x | 1.0

where inv is 1
f (x)

. Moreover, we considered that the division, and the logarithm

functions are protected, i.e., 1
0 = 1 and log(f (x)) = 0 iff f (x) ≤ 0.

4.2.2 Boston Housing Problem

This is a regression dataset from the UCI repository [11]. The dataset is composed
by the housing prices from the suburbs of Boston, and the aim is to create a
regression model that predicts the median house price, given a set of demographic
features. The dataset is composed by 506 examples, each one composed by 13
features (12 continuous, 1 binary), and one continuous output variable in the
range [0, 50]. This problem corresponds to a typical machine learning task and we
need to measure the ability of the evolved models to work with unseen instances.
Following the guidelines from [23], the dataset is partitioned into 2 disjoint sets:
(1) 90% of the examples are used as the training set to learn a model; (2) the
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remaining 10% are used as the test set, to assess the performance of the model.
The set of production rules is extended from the quartic problem, with the inclusion
of the additional descriptive variables used for predicting house prices to the
non-terminal <var>.

4.2.3 Pagie Polynomial Regression

The objective is to approximate the polynomial function defined by:

1

1+ x−4 +
1

1+ y−4 . (2)

The function is sampled in the [−5, 5] interval, with a step s = 0.4. For this
regression problem we use the following production set:

<start> ::=<expr>

<expr> ::=<expr><op><expr>

| (<expr>)

|<pre_op>(<expr>)

|<var>

<op> ::= + | − | ∗ | /
<pre_op> ::= sin | cos | exp | log

<var> ::= x | y

Even though it defines a smooth search space, the Pagie polynomial has the
reputation for being difficult [9, 13].

4.2.4 Harmonic Curve Regression

The purpose is to approximate the series defined by:

x∑

i

1

i
, (3)

where x is in the [1, 50] interval, with a step s = 1.0. This problem is interesting
as it complements the standard interpolation task with a generalisation step. In
this second stage, the interval x ∈ [51, 120] with s = 1.0 is considered. For the
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harmonic curve regression problem we use the following production set:

<start> ::=<expr>

<expr> ::=<expr><op><expr>

| (<expr>)

|<pre_op>(<expr>)

|<var>

<op> ::= + | ∗
<pre_op> ::= + | ∗ | inv | sqrt

<var> ::= x

4.2.5 5-Bit Parity

The aim of this problem is to evolve a Boolean function that takes a binary string of
length 5 as input and returns a value that indicates whether the number of 1s in the
string is even (0) or odd (1). The production set for this problem is:

<start> ::=<B>

<B> ::=<B> and <B>

|<B> or <B>

| not(<B> and <B>)

| not(<B> or <B>)

|<var>

<var> ::= b0 | b1 | b2 | b3 | b4

where b0, b1, b2, b3, b4 are the input bits.

4.2.6 11-Bit Boolean Multiplexer

The task of the 11-bit Boolean multiplexer is to decode a 3-bit address and return the
value of the corresponding data register (d0, d1, d2, d3, d4, d5, d6, d7). The Boolean
11-multiplexer is a function of 11 arguments: three, s0 to s2 which correspond to the
addresses and eight data registers, i0 to i7. The production set for this problem is
defined as:
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<start> ::=<B>

<B> ::=<B> and <B>

|<B> or <B>

| not(<B>)

| not(<B>or<B>)

| (<B>) if (<B>) else (<B>)

|<var>

<var> ::= s0 | s1 | s2 | i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7

4.2.7 Santa Fe Ant Trail

The goal of the Santa Fe Ant Trail problem is to evolve a set of instructions for an
artificial agent so that it can collect a certain number of food pellets in a limited
number of steps (650). The trail consists of 89 food pellets distributed in a 32× 32
toroidal grid. The agent starts in the top-left corner of the grid facing east, and it can
turn left, right, move one square forward, and check if the square ahead contains
food. The production set for this problem is:

<start> ::=<code>

<code> ::=<line>

|<code>

<line>

<line> ::= if ant.sense_food():

<line>

else:

<line>

|<op>

<op> ::= ant.turn_left()

| ant.turn_right()

| ant.move_forward()
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Like the Quartic Polynomial problem, it was included for historical reasons, in spite
of the debate surrounding its utility as a GP benchmark.

4.3 Experimental Results

The experimental results described below are reported in terms of the mean best
fitness value obtained at each generation, over the 30 independent runs.

The results for the Boston housing problem are shown in Fig. 5. Looking at the
training results (left panel) it is possible to see that in the first 8 generations the
performance of the two approaches is very similar. In the next two generations
the SGE version seems to discover solutions that have a smaller error. However,
at generation 12, the quality of the solutions found by DSGE surpasses the quality
of the ones found by SGE. From this point onwards it seems that the former method
has an advantage, resulting in solutions with a smaller error. This behaviour is
observable until the end of the evolutionary search. The test results (right panel)
exhibit a similar behaviour. Although for the first 7 generations DSGE generates
worse quality solutions, its error rapidly decreases, and after about 12 generations is
already smaller than the error showed by SGE. Regarding the statistical differences,
the tests show no evidence of significant differences between the approaches on both
the train and test phases.

Figure 6 shows the results of the harmonic curve regression problem; similarly
to the previous problem the experimentation is divided into two stages: train and
test. Regarding the train phase (left panel) the figure reveals that both SGE variants
gradually discover better approximations as evolution progresses. However, DSGE
seems to exhibit an increased effectiveness, since it discovers solutions with a lower
error, in less time. In the test results (right panel), approximately from generation 10,
the performance of DSGE starts decreasing (higher fitness values), indicating that
it may be overfitting. Nonetheless, the test results reported by DSGE are slightly
superior to the SGE ones (not statistically).
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Fig. 5 Evolutionary results for the Boston Housing Problem. The panel on the left shows the
results for training, and the panel on the right corresponds to the test results
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Fig. 6 Evolutionary results for the Harmonic Curve Regression. The panel on the left shows the
results for training, and the panel on the right corresponds to the test results

Concerning the quartic problem, the results are depicted in Fig. 7a. It is possible
to see that in both approaches the error gradually decreases over time, being almost 0
by the end of the evolutionary process. For this problem it is possible to see that there
are no clear differences between DSGE and SGE. This apparent result is confirmed
by the statistical analysis, which shows that there are no meaningful differences
between the approaches. Looking at the Pagie polynomial, the optimization results
follow a trend similar to the one identified in the previous problem (Fig. 7b). The
individuals of the initial population of SGE and DSGE have comparable fitness,
with the DSGE one being slightly worse. Then, as optimisation advances, DSGE
gradually and consistently obtains low error solutions without stagnating. On the
contrary, the vanilla version of SGE has a slower gradient, which prevents it from
reaching better solutions within the allocated evolutionary time. Looking at the
quality obtained by the two variants in the end of the evolutionary run, there
is a noticeable difference between the methods, with DSGE obtaining solutions
with considerable lower error. We applied a statistical test to look for meaningful
differences, and the results showed that there are statistical significant differences
between the approaches.

For the 5-bit even parity problem the results are shown in Fig. 7c. In this
problem it is possible to see that having a less tightened algorithm such as DSGE is
advantageous. Although in the first 8 generations SGE finds solutions with a smaller
error, DSGE rapidly catches up with it, surpassing the quality of the solutions being
found by the former method. This trend is visible throughout the entire evolutionary
process. Statistical tests do not reveal any differences between the methods for this
particular problem.

The 11-bit Boolean multiplexer results are shown in Fig. 7d. The plot shows that
for this problem the DSGE clearly outperforms the vanilla version of SGE. Together
with the 5-bit problem, the results seem to indicate that for Boolean problems with
grammars similar to the ones described above it is advantageous to use the dynamic
version of SGE. The statistical tests show that for the multiplexer problem there are
meaningful differences between the two approaches, and that the effect size of the
differences is large (r > 0.5).
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Fig. 7 Evolutionary results for the (a) quartic regression, (b) pagie polynomial regression, (c)
5-bit parity, (d) 11-bit Boolean multiplexer and (e) Santa Fe Ant Trail

Finally, Fig. 7e shows the results for the Santa Fe Ant problem. The figure shows
that for this problem, at the end of the evolutionary search, there are no differences
between the two methods. However it is possible to see that the DSGE is more
efficient since it needs less generations to reach a optimal solution for the problem.
The statistical tests corroborated the fact that there are no significant differences
between the two methods.
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5 NeuroEvolution

In addition to testing DSGE with the above classical problems we also investigate its
capacity of automatically searching for the topology and weights of Artificial Neural
Networks (ANNs) (also known as NeuroEvolution). This problem is deemed as a
more complex task, since we have to simultaneously search for both the structure
of the model, i.e., the network topology, and its real parameterisation, i.e., the
synaptic weights. Our goal is to show that for this type of problems DSGE is a
good alternative, able to find effective neural network architectures.

5.1 Experimental Setup

The experiments described in this section follow a setup similar to the one described
in Table 3, where only the population size, number of generations and maximum
depth parameters differ. We use a population size of 100 individuals, which are
evolved throughout 500 generations, totalling 50,000 evaluations per evolutionary
run.

The grammar used for the conducted experiments is detailed in Fig. 8. The
grammar is capable of representing one-hidden-layered networks with a single
output neuron. The sequence of hidden-nodes is encoded in the <sigexpr> non-
terminal symbol. Each hidden-node is the result of an activation function (in this
case the sigmoid function) that receives as input the connections to input nodes and
a bias value. The output of the activation function is then multiplied by a weight that
encodes the synaptic weight between that specific neuron and the output neuron.

Fig. 8 Grammar used for the
NeuroEvolution experiments

<sigexpr> ::= <node>

|<node> + <sigexpr>

<node> ::= sig(<sum> + <bias>) ∗ <weight>

<sum> ::= <weight> ∗ <features>

|<sum> + <sum>

<features> ::= x1

| . . .

| xn

<weight> ::= <number>

<bias> ::= <number>

<number> ::= <digit>.<digit><digit>

| − <digit>.<digit><digit>

<digit> ::= 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9
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While in the previous experiments we defined a maximum depth that was counted
from the root node, in the following experiments we consider the depth at the sub-
tree level, and define maximum depths for each non-terminal symbol. This way,
we are able to set the upper bounds on the number of nodes and connections. For
the following experiment we define for the <sigexpr> and <sum> non-terminal
symbols a maximum depth of 6 and 3, respectively.

To evolve effective ANNs, apart from defining a grammar to encode the topology
and weights of the ANNs, we also need to choose a fitness function suitable to
measure the performance of the candidate solutions. For the tasks described in this
section we use the exponential Root Mean Squared Error (RMSE) per class, which
is defined as:

m∏

c=1

exp

(√∑nc

i=1(oi − ti )2

nc

)

,

where m is the number of classes of the problem, nc is the number of instances
of the problem that belong to class c, oi is the confidence value predicted by the
evolved network, and ti is the target value. This way, on the one hand we are able to
deal with unbalanced datasets because the error is computed at a class level; on the
other hand we avoid overfitting by penalising more higher errors than lower ones.

5.2 Benchmark Description

We selected four classification problems, all of them binary because of the
constraints imposed by the used grammar-based approaches, that do not allow the
reuse of previously created neurons (further discussed in [1]). The problems have
an increasing number of features, and thus increasing complexity in terms of the
classification task to be solved. The following paragraphs present a brief description
of each of the used benchmarks.

Flame [7] Gathers 240 instances, each with two attributes, and the goal is to
separate between two different classes: one containing 87 instances and the other
with 153 instances. Typically used for clustering purposes.

Wisconsin Breast Cancer Detection (WDBC) [11, 21] Comprises 30 features that
are extracted from digitalised images of breast masses. The dataset has 569
instances, where 212 are malign and 357 are benign.

Ionosphere [11, 20] Collects ionosphere radar returns, that are to be separated
into good (if the returns evidences of structure, 300 instances) and bad (other-
wise, 126 instances). For each instance 34 properties are given.

Sonar [8, 11] Contains 60 features of sonar signals that allow a classification
model to separate between signals that are bounced off a metal cylinder (111
instances) or a rock cylinder (97 instances).
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5.3 Experimental Results

Figure 9 shows the evolution of the fitness of the best individuals across generations
for SGE and DSGE for the flame, WDBC, ionosphere and sonar datasets. Results
are averages of 30 independent runs. Despite the similar results during the initial
generations, it is perceptible that in the long term DSGE outperforms SGE on all
tested problems, indicating that the new representation, where no mutation is silent,
promotes locality and the efficient exploration of the search space.

Apart from analysing the fitness evolution we have also recorded several other
metrics related with the performance of the generated networks, namely: RMSE,
Area Under the ROC Curve (AUROC) and f-measure. These metrics are recorded
for both the train and test sets; recall that only the train set is used for the
evolutionary process. Table 4 reports the results that are obtained with SGE and
DSGE. Results are averages of the best network (in terms of fitness) of each of the 30
evolutionary runs; each cell is formatted as: mean ± standard deviation. Moreover
we also report the number of neurons and number of used features, which allow us
to better understand the structure and complexity of the evolved networks.

A perusal analysis of the results confirms that DSGE outperforms SGE on all
tested benchmarks, and on all recorded performance metrics, i.e., RMSE DSGE
values are inferior to those reported by SGE, and accuracy, AUROC and f-measure
are superior on the experiments conducted using DSGE. In addition, the standard
deviation values are lower when using DSGE, which indicates that it consistently
discovers effective solutions.
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Fig. 9 Fitness evolution of the best individuals across generations for the flame, WDBC,
ionosphere and sonar datasets
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Table 4 Evolution of one-hidden-layered ANNs

Flame WDBC Ionosphere Sonar

Fitness
SGE 1.32 ± 0.25 1.46 ± 0.08 1.48 ± 0.18 1.85 ± 0.18

DSGE 1.16 ± 0.13+++ 1.36 ± 0.06+++ 1.38 ± 0.13+++ 1.73 ± 0.12+++

T
ra

in

RMSE
SGE 0.16 ± 0.13 0.19 ± 0.03 0.21 ± 0.07 0.34 ± 0.06

DSGE 0.08 ± 0.06+++ 0.15 ± 0.03+++ 0.17 ± 0.05++ 0.30 ± 0.05++

Accuracy
SGE 0.96 ± 0.08 0.95 ± 0.02 0.93 ± 0.11 0.84 ± 0.12

DSGE 0.99 ± 0.03+++ 0.97 ± 0.01+++ 0.97 ± 0.03+++ 0.90 ± 0.04++

AUROC
SGE 0.98 ± 0.04 0.99 ± 0.01 0.94 ± 0.04 0.91 ± 0.04

DSGE 0.99 ± 0.01+++ 0.99 ± 0.00+++ 0.96 ± 0.03+++ 0.93 ± 0.04∼

F-measure
SGE 0.96 ± 0.08 0.93 ± 0.03 0.93 ± 0.18 0.78 ± 0.23

DSGE 0.99 ± 0.02+++ 0.96 ± 0.02+++ 0.98 ± 0.02+++ 0.88 ± 0.05++

Te
st

RMSE
SGE 0.22 ± 0.13 0.23 ± 0.04 0.32 ± 0.05 0.44 ± 0.04

DSGE 0.14 ± 0.08++ 0.20 ± 0.03++ 0.28 ± 0.04+++ 0.43 ± 0.04∼

Accuracy
SGE 0.93 ± 0.09 0.93 ± 0.02 0.87 ± 0.10 0.73 ± 0.09

DSGE 0.97 ± 0.05+++ 0.95 ± 0.02+++ 0.90 ± 0.03++ 0.76 ± 0.05∼

AUROC
SGE 0.96 ± 0.08 0.98 ± 0.02 0.90 ± 0.05 0.82 ± 0.05

DSGE 0.99 ± 0.03++ 0.98 ± 0.01++ 0.93 ± 0.04++ 0.83 ± 0.04∼

F-measure
SGE 0.94 ± 0.09 0.91 ± 0.03 0.89 ± 0.17 0.64 ± 0.20

DSGE 0.98 ± 0.04+++ 0.93 ± 0.03+++ 0.93 ± 0.02++ 0.72 ± 0.06∼

Num. neurons
SGE 4.87 ± 1.83 3.73 ± 1.53 3.53 ± 1.36 3.07 ± 1.39

DSGE 6.47 ± 1.20 6.23 ± 1.58 5.97 ± 1.78 6.13 ± 1.69

Num. features
SGE 2.00 ± 0.00 12.0 ± 6.51 12.1 ± 5.79 13.3 ± 6.42

DSGE 2.00 ± 0.00 14.5 ± 3.52 13.3 ± 4.74 17.6 ± 4.66

Comparison between DSGE and other grammar-based approaches. Results are averages of 30
independent runs. + and ∼ represent the result of statistical tests (see text)

To analyse the tendency of evolution to overfit we measure the difference
between the train and test performances, which for SGE are, on average, 0.08,
0.06, 0.04 and 0.06, for the RMSE, accuracy, AUROC and f-measure, respectively.
For DSGE the differences are, on average, 0.09, 0.06, 0.04 and 0.06, for the same
metrics. However the difference in the accuracy in slightly superior when using
DSGE, it is our understanding that this is a result of the DSGE greater performance,
rather than an indicator of overfitting.

To verify if the differences between DSGE and SGE are significant we perform a
statistical analysis. First, we use the Kolmogorov-Smirnov and Shapiro-Wilk tests,
with a significance level of α = 0.05, where it is possible to acknowledge that the
data does not follow any distribution, and as such, the Mann-Whitney U test (non-
parametric), with α = 0.05 is used to perform the pairwise comparison. The results
of the statistical tests are reported in Table 4 using a graphical overview, where: ∼
indicates no statistical difference between the compared methods and+ signals that
DSGE is statistically superior to SGE. The effect size is denoted by the number of
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+ signals, where +, ++ and +++ correspond respectively to low (0.1 ≤ r < 0.3),
medium (0.3 ≤ r < 0.5) and large (r ≥ 0.5) effect sizes.

For those searching a comparison between SGE and GE on the same benchmarks,
and using the same grammar, refer to [2]. It has already been demonstrated
that evolving both the structure and weights of ANNs using SGE was the path
to follow, in the sense that the found weights directly impact the learning of
the network. Moreover, it was demonstrated that SGE was able to discover
better results than GE. Consequently, as DSGE performs better than SGE we
indirectly conclude that DSGE performs better than GE for these specific class of
problems.

6 Conclusions

Since the early days of GP that researchers have been using grammars to specify
restrictions on problem domains and guide the evolutionary process. Amongst the
most successful proposals is GE, which is used by practitioners from different
backgrounds, due to its simplicity and for being a plug-and-play approach. Con-
sequently, to deal with the evolution of solutions for different problem domains,
only the grammar needs to be changed. Nevertheless, GE has been target of
some criticisms concerning the way in which it searches the space of solutions.
Amidst these criticisms, the most infamous are concerned with the high levels of
redundancy and the low locality of the representation, which arguably make it less
effective [23].

SGE is a new GE variant, with its most distinctive feature being the one-to-one
correspondence between genes and non-terminals of the used grammar. In spite of
the good results obtained by SGE, it was perceptible that it still had some drawbacks,
namely the fact that we needed to pre-process the grammar in order to remove any
recursive rules. This was done by adding intermediate symbols that resemble the
recursive expansions of the grammar.

In this work we introduce a new version of SGE called DSGE, which removes
the need to pre-process the grammar. In concrete we define the maximum depth
that each expression tree can have, and we stop the trees from growing beyond that
limit (as in traditional tree-based GP). We presented the procedures needed to create
and map solutions from the genotype to the phenotype, and conducted a wide and
systematic set of experiments to assess the effectiveness of the new approach. We
selected classical benchmark problems from the literature, and a more challenging
set of problems from the NeuroEvolution area.

The results show that the performance of the new method, DSGE, is never
inferior to the vanilla version of SGE, being superior in a vast set of the used
benchmarks, obtaining solutions with a better quality.
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Geometric Semantic Grammatical
Evolution

Alberto Moraglio, James McDermott, and Michael O’Neill

Abstract Geometric Semantic Genetic Programming (GSGP) is a novel form of
Genetic Programming (GP), based on a geometric theory of evolutionary algo-
rithms, which directly searches the semantic space of programs. In this chapter, we
extend this framework to Grammatical Evolution (GE) and refer to the new method
as Geometric Semantic Grammatical Evolution (GSGE). We formally derive new
mutation and crossover operators for GE which are guaranteed to see a simple
unimodal fitness landscape. This surprising result shows that the GE genotype-
phenotype mapping does not necessarily imply low genotype-fitness locality. To
complement the theory, we present extensive experimental results on three standard
domains (Boolean, Arithmetic and Classifier).

1 Introduction

Geometric Semantic Genetic Programming (GSGP) is a novel form of Genetic
Programming (GP), introduced by Moraglio et al. [1]. In GSGP, search operators
act on the syntax of the programs but can be understood as acting directly on the
underlying semantics of programs: mutation and crossover produce offspring which
are, respectively, semantically close to and semantically intermediate between
their parents. Specific GSGP operators for Boolean, Regression and Classification
domains have been derived [1] and have a simple form. This is possible because
the mapping from genotypes to semantics in these GP domains is simple, not
complex as was widely believed before GSGP. Furthermore, the fitness landscape
seen by GSGP is always a simple unimodal landscape, and its search performance
is provably good on large classes of problems [2–4].
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GE [5] is a successful form of GP that represents programs indirectly as integer
lists. Phenotypes are obtained by using the integers of the genotype to select among
alternatives in the grammatical rules. One benefit of this indirect encoding is that
it simplifies the application of search to different programming languages and
constrained structures. A common criticism of GE is that because of the rather
complex developmental genotype-phenotype mapping, search operators can be
disruptive to both syntax and semantics, e.g. low locality of the genotype-phenotype
mapping [6].

The purpose of the current chapter is to extend the ideas of GSGP to GE, giving
Geometric Semantic Grammatical Evolution (GSGE). The remainder of the chapter
is organised as follows. In Sect. 2, GSGP itself is reviewed. In Sect. 3, we describe
theoretical requirements for translating GSGP concepts to GE, and in Sect. 4 we use
these to derive new geometric semantic search operators for GE, and prove their
properties for three domains (Boolean, Arithmetic, and Classifier). We give also a
general recipe to derive GSGE operators from GSGP operators for any domain. In
Sect. 5, we present an efficient implementation of GSGE (the size of the solutions
grows only linearly even when using crossover). In Sect. 6, we present extensive
experimental results and analysis. In Sect. 7, we provide a discussion, and in Sect. 8
a summary of the chapter.

2 Geometric Semantic Genetic Programming

Traditional genetic programming ignores the meaning of programs, as the search
operators it employs act on their syntactic representations, regardless of their
semantics. E.g., subtree swap crossover is used to recombine functions represented
as parse trees, regardless of whether trees represent Boolean expressions, arith-
metical functions, or classifier programs. While this guarantees the production of
syntactically well-formed expressions, why should such a blind syntactic search
work well for different problems and across domains? In the end, it is the meaning
of programs that determines how successful search is at solving the problem.

The semantics of a program can be formally defined in a number of ways. It can
be a canonical representation, so that any two programs with the same semantics or
behaviour have the same canonical representation (e.g., Binary Decision Diagrams
for Boolean expressions). It can instead be a description of program behaviour in a
logical formalism, as used in formal methods. In the context of black-box search, it
may be argued that the semantics of a program is just its fitness. Finally, semantics
can be defined as the mathematical function computed by a program, i.e., the set of
all possible input-output pairs making up the computed function. In practice, in GP,
it is calculated over a restricted set of input-output pairs, and this is the definition
we use in this paper.

In the literature, there are a number of works using the semantics of programs
to improve GP. As many GP individuals may encode the same function, some
researchers use canonical representations of functions to enforce semantic diversity
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by discarding individuals of duplicate semantics, in initialization [7, 8], crossover,
and mutation [9, 10]. Nguyen et al. [11] measure semantic distance between
individuals as distance between their outputs for the same set of inputs. This distance
is used to semantically bias the search operators: mutation rejects offspring that
are not sufficiently semantically similar to the parent, and crossover swaps only
semantically similar subtrees between parents. Krawiec et al. [12, 13] have also
used semantic distance to propose a crossover for GP trees that is approximately
geometric [14, 15] in the semantic space. Interestingly, the fitness landscape
induced by this operator has perfect fitness-distance correlation. The operator was
implemented approximately by using a traditional crossover, generating a large
number of offspring, and accepting only offspring semantically intermediate to their
parents.

While the semantically aware methods above produce overall superior perfor-
mance to traditional methods, they are indirect: search operators are implemented
by acting on the syntax of the parents to produce offspring, which are accepted
only if some semantic criterion is satisfied. This has two drawbacks: (1) these
implementations are very wasteful, as they are heavily reliant on trial and error;
(2) they do not provide insights on how syntactic and semantic searches relate
to each other. Would it then be possible to directly search the semantic space
of programs? More precisely, would it be possible to build search operators that,
acting on the syntax of the parent programs, produce offspring that are guaranteed
by construction to respect some semantic criterion or specification? Krawiec et
al. [12, 13] argued that due to the complexity of the genotype-phenotype mapping
in GP, a direct implementation of exact semantic operators is probably impossible.

However, GSGP [1] shows that the genotype-phenotype (syntax to semantics)
map of commonly considered GP domains is, in an important sense, easy —
not complex. GSGP gives exact geometric semantic crossovers and mutations for
different problem domains (Boolean, Arithmetic, Classifier). By construction these
search operators see a simple unimodal fitness landscape for any problem in these
domains [1].

2.1 Geometric Semantic Operators

A search operator CX : S × S → S for a search space S is a geometric
crossover [14, 15] w. r. t. the metric d if for any choice of parents T 1, T 2 ∈ S,
each offspring T 3 = CX(T 1, T 2) is in the d-metric segment between parents,
that is d(T 1, T 3) + d(T 3, T 2) = d(T 1, T 2). A search operator M : S → S

is a geometric ε-mutation w. r. t. the metric d if for any choice of the parent T 1,
each offspring T 2 = M(T 1) is in the d-metric ball of radius ε centered in the
parent, that is d(T 1, T 2) ≤ ε. Suppose (as is typical) that the fitness function can
be written as a distance F(T ) = d(O(T ), t) between the output vector O(T ) of
the program T ∈ S on a fixed vector of inputs, and a target output vector t on the
same inputs. Then the semantic distance SD between two programs T 1, T 2 ∈ S is
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defined as the distance between their corresponding output vectors O(T 1), O(T 2),
measured with the metric d. That is, SD(T 1, T 2) = d(O(T 1),O(T 2)). Geometric
semantic operators are operators on the space of functions which are geometric
with respect to metric SD. E.g., geometric semantic crossover on Boolean functions
returns offspring Boolean functions such that the output vectors of the offspring are
in the Hamming segment between the output vectors of the parents.

This is however only an abstract specification of geometric semantic search
operators. We require an algorithmic characterization. Note that there is a different
type of geometric semantic crossover for each choice of space S and distance d.
Consequently, there are different semantic crossovers for different GP domains. In
the following, we provide algorithmic definitions of geometric semantic operators
for Boolean, Arithmetic and Classification domains. A formal treatment and explicit
derivations have been previously given [1].

Boolean Crossover Given two parent Boolean functions T 1, T 2, the geometric
semantic crossover is the recombination that returns the offspring Boolean function
T 3 = (T 1∧T R)∨(T R∧T 2) where T R is a randomly generated Boolean function
(see Fig. 1). T R is effectively a crossover mask, choosing a point in the semantic
space intermediate to T1 and T2.

Boolean Mutation Given a parent function T , the mutation returns the offspring
T M = T ∨M with probability 0.5 and T M = T ∧M with probability 0.5 where
M is a random minterm of all input variables. (A minterm is a term consisting of the
product of all variables, each either negated or non-negated.)

Arithmetic Crossover Given two parent functions T 1, T 2, the geometric semantic
crossover is the recombination that returns the real function T 3 = (T 1 ·T R)+((1−
T R) · T 2) where T R is a random real constant in [0, 1].
Arithmetic Mutation Given a parent function T , the mutation with mutation step
ms returns the real function T M = T +ms · (T R1 − T R2) where T R1 and T R2
are random real functions.

OR
/ \

AND AND
T3 = / \ / \

T1 TR NOT T2
|
TR

AND
T1 = / \

X1 X2
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T2 = / \

X2 X3

NOT
TR = |
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/ \

AND X3
T3 = / \

AND NOT
/ \ |
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Fig. 1 Left: Semantic Crossover scheme for Boolean Functions; Centre: Example of parents (T1
and T2) and random mask (TR); Right: Offspring (T3) obtained by substituting T1, T2 and TR in
the crossover scheme and simplifying
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Classifier Crossover Given two parent classifiers T1,T2, with symbols as inputs
(IS) and outputs (OS), the geometric semantic crossover is the recombination that
returns the offspring classifier T3 = IF CONDR THEN T1 ELSE T2 where
CONDR is a random condition (e.g. of the form Xi == s where s ∈ IS).

Classifier Mutation Given a parent classifier T, the mutation returns the offspring
classifier TM = IF CONDR THEN OUTR ELSE T where CONDR is a condition
which is true only for a single random setting of all input parameters, and OUTR is a
random output symbol. The offspring can be expressed as nested IF-THEN-ELSE
statements with simple conditions of a single input parameter each.

3 Foundations for Geometric Semantic Operators for GE

In this section, we first introduce the concept of compositional semantics, then we
show that the GE mapping is compositional, and finally equipped with this we
provide a formal recipe to derive geometric semantic operators for the GE encoding.

3.1 Compositional Semantics

In both linguistics—the study of natural languages—and theory of programming
languages, compositional semantics refers to a relation between syntax of the
sentences in a language and their semantics. The principle of compositional
semantics states that the meaning (semantics) of a sentence (syntax) can be derived
by combining the meanings of its sub-sentences. For example, the meaning of the
sentence S = A and B is [S] = [A and B] = [and]([A], [B]), where [] is a
function that maps a syntactic element to its meaning. This is a natural relation that
holds for most languages, natural or artificial.

The relation between syntax and semantics in GSGP is compositional. Syn-
tactically, geometric semantic crossovers plug parent trees T1 and T2 into a
recombination tree XT to obtain an offspring tree T3. We are allowed to write
this operation as T3 = XT(T1, T2) and interpret it as a functional composition
because the syntactic operation of plugging the structures T1 and T2 in the
structure XT is mirrored by the semantic operation of function composition of the
function XT on the functions T 1 and T 2 producing the function T 3, i.e., [T3] =
[XT(T1, T2)] = [XT]([T1], [T2]). That is, geometric semantic crossovers are
compositional. In contrast, traditional subtree swap crossover is not compositional.
Formally this crossover could be similarly written as T3 = XO(T1, T2) denot-
ing that the offspring structure T3 can be obtained by some syntactic operation XO
on the structures T1 and T2. However, this time the semantics of T3 cannot be
written as [T3] = [XO]([T1], [T2]) as the semantics of the operation XO
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(swapping two subtrees) is inherently linked to the syntactic representation of T1
and T2, and cannot be defined solely on their semantics.

An immediate consequence of the semantic compositionality of GSGP is that, as
the semantics of the offspring depend solely on the semantics of their parents, and
not on their syntactic representations, functions and geometric semantic operators
acting on these can also be equivalently represented in a form or language other than
trees, if it respects semantic compositionality.

We will show that the genotype-phenotype mapping in GE is compositional, i.e.,
by stringing together linear representations of parents, we get the corresponding
linear representations of the offspring.

3.2 Compositionality of the GE Mapping

In Sect. 4, we will introduce simple GE search operators for several domains
which are semantically geometric, i.e. perfectly well-behaved in terms of semantic
effects. Given the non-trivial developmental encoding of GE, it is surprising that
these operators are at all possible, especially in a simple form. In this section,
we present a theory that explains rigorously how this is possible. The gist of the
argument is as follows. We will observe that the GE developmental process mapping
naturally preserves (compositional) modularity: phenotypic modules (derivation
subtrees) correspond to genotypic modules (sublists). Together with a compositional
interpretation of the geometric semantic operators, this implies the existence of a
genotypic crossover/mutation scheme (on integer lists) equivalent to a phenotypic
crossover/mutation scheme (on derivation trees), which is in turn equivalent to
the GSGP crossover/mutation scheme (on GP trees): that is, an implementation
of GSGP geometric semantic operators for GE. These considerations apply to
the domains for which GSGP operators were derived by Moraglio et al. [1]
(Boolean, Regression and Classification) and may extend to GSGP operators in
other domains [16].

Let us now briefly review the GE genotype-phenotype mapping. Figure 2
illustrates the mapping. The genotype encoding a solution is the vector at the
top. The corresponding derivation tree (not shown) is obtained through depth-first
traversal of the grammar, using the genotype to select among multiple alternatives
in the rules. The derivation tree is produced incrementally: at each step, the next
gene (integer) in the genome is used to select the expansion for the left-most non-
terminal node in the developing derivation tree. The value of each gene is taken
modulo the number of available choices in the grammar for this non-terminal. When
there are no non-terminal nodes left to expand, the derivation tree is complete. (In
early versions of GE, a “wrapping” method was used, that is if the genotype has
been exhausted and derivation is not finished, then indexing “wraps around” to
the beginning of the genotype. Alternatively, it may be the case that derivation is
completed before the genotype is exhausted. In this case, extra genes are simply
ignored. The operators presented in the next section avoid these complications by
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Fig. 2 Grammatical evolution genotype-phenotype mapping

design.) The phenotype (a string representing a program) is then extracted from the
derivation tree by reading the derivation tree leaf nodes from left to right. Finally,
the vector at the bottom of Fig. 2 is the semantics of the phenotype, that is the vector
of the outputs of the program for all possible combinations of inputs (or for some
subset, depending on the domain).

To show that the GE mapping is semantically compositional, we will look more
closely at several derivation trees. Figures 3, 4 and 5 show the derivation trees and
the genotypes (bottom) for the expressions x1 and x2, x2 or x3 and not x3
respectively, obtained using the grammar in Fig. 2. The number annotating each
non-terminal node of the derivation tree identifies the grammatical production that
was used to generate its child nodes out of the available applicable productions.
For example, the number (0) annotating the root node (expr) of the derivation tree
in Fig. 3 signifies that its child nodes (expr, biop and expr) were obtained by
selecting production rule 0 in the grammar in Fig. 2, out of those whose LHS is
expr. The choice of production rule 0 for the root node is dictated by the 0 as first
entry of the genotype. The phenotype x1 and x2 is just the terminal nodes of the
derivation tree, read from left to right.

Let us now make three observations that together will show the semantic
compositionality of the GE mapping, and provide a formal recipe to derive search
operators for the grammatical genotype equivalent to the geometric semantic
operators.
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Fig. 3 Derivation tree for the
expression x1 and x2
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Fig. 5 Derivation tree for the
expression not x3. The
quotation marks (“0”)
indicate that a codon is not
strictly required, since only
one production for the uop
non-terminal exists; in some
GE systems the codon is
consumed regardless, and we
follow this practice
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Observation 1 The derivation tree is effectively the parse tree of the given
expression w.r.t. the given grammar. The parsing of a sentence w.r.t. a given
grammar is the inverse operation of generating (or deriving) a valid sentence of the
grammar. This observation leads to an algorithmic recipe to invert the GE genotype-
to-phenotype mapping, i.e., a mechanical way to compute the GE representation
of any grammatically valid phenotypic expression: (1) using a standard parsing
algorithm, parse the given phenotypic expression (sentence) w.r.t. the grammar; the
obtained parse tree is the derivation tree of the phenotypic expression; (2) use the
numbering of the production rules in the grammar to annotate each non-terminal
node of the derivation tree with the choice of production rule consistent with its
child nodes (similar to GE Sensible Initialisation “unmodding” [17]); (3) visit the
derivation tree using depth-first traversal and collect the sequence of choices on
the nodes. The resulting sequence is a genotype (one among many) of the given
expression. For example, looking again at Fig. 3 but from the bottom to the top this
time, given the phenotypic expression x1 and x2 and the grammar in Fig. 2, a
standard parsing algorithm can be used to obtain its (unannotated) parse tree, which
is the same as the derivation tree. This can then be annotated by looking at the
numbering of the grammatical productions in Fig. 2, obtaining the same annotations.
Then the genotype can be obtained by traversing depth-first the annotated tree
obtaining the sequence [0, 2, 0, 0, 2, 1], which is the same as the original genotype.

Observation 2 The use of depth-first expansion of the parse tree makes the
genotype-to-phenotype mapping modular in the following sense. As noted in the
previous point, we can obtain the genotype associated with a parse tree by traversing
depth-first the annotated tree (T ) and collecting the numbers in sequential order
obtaining the sequence S, i.e., S = DFV (T ). If we ‘hide’ any subtree of the
derivation tree by replacing the subtree with a node X encapsulating the subtree
and compute the genotype by depth-first traversal, we obtain that DFV (T ) =
S1,DFV (X), S2, which means that the depth-first visit of T is a sequence of
the form: uninterrupted sequence S1, followed by the (unknown) uninterrupted
sequence obtained by depth-first visit of the hidden tree X, followed by a second
uninterrupted sequence S2. This holds for depth-first traversal because of its
prioritisation of visit of the nodes in a tree, which has the property that when the
traversal enters a subtree, it will then visit all its nodes before leaving it, and then
it will not return to it anymore. This property does not hold for other tree traversal
strategies. For example, it does not hold for breadth-first traversal of the tree. This is
because breadth-first traversal could enter and leave any given subtree several times
(more precisely, a number of times equal to the depth of the subtree) with the effect
of interleaving the nodes of the subtree with the nodes of the rest of the tree in the
output sequence. The modularity of the genotype-phenotype mapping is illustrated
in Fig. 6. The nodes with gray background are nodes encapsulating subtrees. The
dash-line is the order of visit of the nodes of the depth-first traversal strategy.
The genotype sequence contains the number associated to the non-terminal nodes,
and when a hidden subtree is encountered (a gray node), its genotype sequence is
included as a self-contained subsequence. A similar concept of modularity in the
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0

0

0

“0”

1 0

expr

expr biop expr

T1 biop TR or expr biop T2

and anduop TR

not

DFV(M) = [0, 0, DFV(T1), 0, DPV(TR), 1, 0, 1, “0”, DPV(TR),0, DPV(T2)]

0

Fig. 6 Derivation tree of crossover mask. The dash-line is the order of visit of the nodes of the
depth-first traversal strategy

genotype-phenotype mapping is implicit in the work of Hemberg [18] (p. 176) on
the classification of operator behaviours in GE.

Observation 3 A geometric semantic operator is a function (i.e., recombination
scheme) that when applied to input functions (parents) returns an output function
(offspring). We observe that when viewed as a ‘sentence’ generated by a grammar,
a geometric semantic operator is a syntactical expression representing the recombi-
nation scheme with ‘holes’ in which to plug the syntactical expressions representing
the input functions. For example, geometric semantic crossover for Boolean func-
tions, T 3 = (T 1∧ T R)∨ (T R∧ T 2), can be seen syntactically as a sentence of the
grammar for Boolean expressions in Fig. 2 where the unspecified input functions
T 1, T 2 and T R (i.e., formal parameters of the recombination scheme) can be seen
syntactically as ‘holes’ or ‘hidden sub-sentences’. The corresponding syntax of the
output function T 3 can then be obtained by plugging in the syntactic expressions of
T 1, T 2 and T R in the ‘holes’ of the syntactic representation of the recombination
scheme.

From these observations it follows that we can obtain the GE genotypic repre-
sentation corresponding to the recombination scheme, by applying the procedure
outlined in observation 1 to invert the genotype-to-phenotype mapping to the syn-
tactic representation of the recombination scheme (interpreted as in observation 3)
i.e., parsing it, annotating the parse tree, and visiting the annotations depth-first.
The ‘holes’ in the sentence correspond to ‘hidden subtrees’ in the parse tree
of the sentence, which as argued in observation 2 correspond to self-contained
subsequences in the genotype sequence. Figure 6 shows the parse tree of the
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T1 =

TR =

T2 =

M(T1,T2,TR)=

0 2 0 0 2 1

1 2 2

0 2 1 1 2 2

0 0 T1 0 TR 1 0 1 0 TR 0 T2

0 0 0 2 0 0 2 1 0 1 2 2 1 0 1 0 1 2 2 0 0 2 1 1 2 2

T3 =

Fig. 7 Example of geometric semantic search operators on grammatical evolution genotype

syntactic representation of the recombination scheme T 3 = (T 1∧T R)∨(T R∧T 2)

and the corresponding GE genotype. Given the GE genotypes of the functions
T 1, T 2 and T R in Figs. 3, 4 and 5 respectively, the GE genotype of the function
T 3 is then obtained by simply placing them in their places in the GE genotype
of the recombination scheme (see Fig. 7). This by construction is equivalent to
the functional composition of the recombination scheme to generic functions T 1,
T 2 and T R, hence it is the geometric semantic crossover for Boolean functions
expressed using the GE representation.

4 Derivation of Geometric Semantic Operators for GE

The theory developed in the previous section is applied here to derive a complete
set of geometric semantic operators for the GE genotype for Boolean, Arithmetic
and Classifier domains. In particular, we aim at deriving crossover, mutation
and initialisation operators acting solely on GE genotypes and being guaranteed
by construction to be equivalent to geometric semantic operators acting on the
corresponding expressed phenotypes. This allows an evolutionary process on GE
genotypes exactly equivalent to an evolutionary process on the corresponding
phenotypes. Note that the design of the search operators is inextricably dependent
on the specific grammar used for each domain. The grammar however is used
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only in the design phase of the search operators. We do not allow it to be used
during the search to e.g., repair the offspring generated by the operators. All the
operators by design must be guaranteed to produce genotypes corresponding to
grammatically valid phenotypic expressions. Furthermore, the offspring genotypes
will be guaranteed to be perfectly formed without requiring genome “wrapping” or
ignoring surplus genes.

4.1 Operators for Boolean Domains

In the following, we first introduce the grammar we use for Boolean expressions.
We then derive crossover, mutation and initialisation operators on GE genotypes for
Boolean expressions based on this grammar.

Grammar The grammar for Boolean expressions considered is in Fig. 8. For
simplicity of illustration, this grammar has only three variables (x1, x2 and x3).
This grammar can express any Boolean function of three variables. However, the
grammar and the corresponding geometric semantic search operators on GE geno-
types can be generalised to any number of variables and to expanded function sets.

Crossover The geometric semantic crossover for Boolean expressions is

T 3 = (T 1 ∧ T R) ∨ (T R ∧ T 2)

where T 1 and T 2 are the parent Boolean expressions, T R is a random Boolean
expression, and T 3 is the offspring Boolean expression.

The geometric semantic crossover for GE is an operation on the genotype of
parents that generates the genotype of the offspring such that the developmental
process via the grammar produces the offspring whose expression is given above.

(A) <expr> ::= (<expr> <biop> <expr>) (0)
| <uop> <expr> (1)

)2(>rav<|

)0(dna=::>poib<)B(
)1(ro|

)0(ton=::>pou<)C(

)0(1x=::>rav<)D(
)1(2x|
)2(3x|

Fig. 8 Grammar for Boolean expressions
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0: (<expr> <biop> <expr>)
0: (<expr> <biop> <expr>)
g(T1): T1
0: and
g(TR): TR
1: or
0: (<expr> <biop> <expr>)
1: <uop> <expr>
0: not
g(TR): TR
0: and
g(T2): T2

Fig. 9 Derivation of phenotype for geometric semantic crossover for Boolean expressions

The corresponding geometric semantic crossover for this grammar is

g(T 3) = [0, 0, g(T 1), 0, g(T R), 1, 0, 1, 0, g(T R), 0, g(T 2)]

where g(.) returns the genotype of its argument. The genotype g(T 3) of the
offspring T 3 is the sequence obtained by inserting the sequences g(T 1), g(T R),
and g(T 2) in the specified positions. Note that the genotypes of the parents (g(T 1)

and g(T 2)) are readily available from the previous stage of the evolutionary process.
The genotype of the random expression (g(T R)) is generated using the initialisation
procedure described below.

Figure 9 shows that expanding the expression g(T 3) using the grammar while
considering T 1, T R, and T 2 as parameter expressions we obtain the geometric
semantic crossover scheme on phenotypes.

Mutation The geometric semantic mutation for Boolean expressions returns the
offspring Boolean expression T M = T ∨M with probability 0.5 and T M = T ∧M

with probability 0.5 where T is the Boolean expression undergoing mutation, M is a
random minterm of all input variables, and T M is the mutated Boolean expression.

The corresponding geometric semantic mutation for this grammar is g(T M) =
[0, g(T ), 1, g(M)] with probability 0.5 and g(T M) = [0, g(T ), 0, 1, g(M)] with
probability 0.5. The genotype of the parent (g(T )) is readily available from the
previous stage of the evolutionary process. The genotype of the random minterm
(g(M)) is generated using the procedure in Fig. 10, which illustrates it for three
variables.

Figure 11 shows that expanding the expression g(T M) using the grammar while
considering T and M as parameter expressions we obtain the geometric semantic
mutation scheme on phenotypes.

Initialisation We aim at creating a random genotype that corresponds to a valid
grammatical expression, i.e. a valid phenotype, without using wrapping or leaving
unused codons or using modulus of the gene values. This would be easy to do by
traversing the grammar to generate the genotypes. We however do not allow explicit
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def generate_mintermgeno(3 variables):
result = [0] # <expr> <biop> <expr>

result += random.choice([[], [1]]) # do-nothing, or negate
result += [2, 0] # <var>, x1
result += [0, 0] # and, <expr> <biop> <expr>

result += random.choice([[], [1]]) # do-nothing, or negate
result += [2, 1] # <var>, x2
result += [0] # and

result += random.choice([[], [1]]) # do-nothing, or negate
result += [2, 2] # <var>, x3
return result

Fig. 10 Procedure to build the genotype of a random minterm of three variables

# T or M
0: (<expr> <biop> <expr>)
g(T): T
1: or
g(M): M

# T and not M
0: (<expr> <biop> <expr>)
g(T): T
0: and
1: (<uop> <expr>)
’0’: not
g(M): M

Fig. 11 Derivation of phenotype for geometric semantic mutation for Boolean expressions

use of the grammar at runtime (apart from during fitness evaluation of genotypes, for
which it is unavoidable), as we want the complete evolutionary process to happen
on the genotypes only, i.e., all search operators, including initialisation, must not
‘peep’ through the genotype-phenotype mapping at runtime. We want the search
operators, including initialisation, to work solely at genotype level, and induce via
the genotype-phenotype map their intended effect at phenotype level, entirely by
design. The design of these search operators naturally is inextricably grounded in
the used grammar.

For Boolean expressions, the initialisation procedure used in GSGP is in
Algorithm 1. We can design an initialisation operator acting entirely on genotypes
inducing at the phenotype level the same behaviour by simply mapping each phe-
notypic sub-component to the corresponding genotypic sub-sequence, as illustrated
in Algorithm 2.
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Algorithm 1: Initialisation: Generate a random Boolean phenotype

1 Function RandomBoolean (depth)
2 if depth = 1 or probability < 2−depth then
3 return random.choice(x1, x2, ...)
4 else
5 with probability 1/3: return (not RandomBoolean(depth-1))
6 with probability 1/3: return ( RandomBoolean(depth-1) and

RandomBoolean(depth-1))
7 with probability 1/3: return ( RandomBoolean(depth-1) or

RandomBoolean(depth-1))

Algorithm 2: Initialisation: Generate a valid random Boolean genotype

1 Function RandomBoolean (depth)
2 if depth = 1 or probability < 2−depth then
3 return [2] + [RndInt(numvar)]
4 (phenotype = x1 / x2 / etc)
5 else
6 with probability 1/3: return [1] + RandomBoolean(depth-1)
7 (phenotype = not < expr >)
8 with probability 1/3: return [0] + RandomBoolean(depth-1) + [0]

+ RandomBoolean(depth-1)
9 (phenotype = < expr > and < expr >)

10 with probability 1/3: return [0] + RandomBoolean(depth-1) + [1]
+ RandomBoolean(depth-1)

11 (phenotype = < expr > or < expr >)

4.2 Operators for Arithmetic Domains

In the following, we first introduce the grammar we use for arithmetic expressions.
We then derive crossover, mutation and initialisation operators on GE genotypes for
arithmetic expressions based on this grammar.

Grammar the grammar for arithmetic expressions considered is in Fig. 12. This
grammar can express any polynomial of three variables. However, the grammar and
the corresponding geometric semantic search operators on GE genotypes can be
readily generalised to any number of variables and other function sets.

Crossover The geometric semantic crossover for arithmetic expressions is

T 3 = (T 1 · T R)+ ((1− T R) · T 2)

where T 1 and T 2 are the parent arithmetic expressions, T R is a random real
constant in [0, 1], and T 3 is the offspring arithmetic expression.
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(A) <expr> ::= (<expr> <biop> <expr>) (0)
)1(>rav<|

| <const> (2)

)0(+=::>poib<)B(
)1(-|

| * (2)

)0(1x=::>rav<)C(
)1(2x|
)2(3X|

)0(0.0=::>tsnoc<)D(
)1(1.0|
......
)01(0.1|

Fig. 12 Grammar for Arithmetic expressions

The corresponding geometric semantic crossover for this grammar is

g(T 3) = [0, 0, 2, g(T R), 2, g(T 1), 0, 0, 0, 2, 10, 1, 2, g(T R), 2, g(T 2)]

where g(.) returns the genotype of its argument. The offspring T 3 has the genotype
formed by substituting the genotypes of T 1, T 2 and T R (g(T 1), g(T 2) and g(T R))
in the above pattern. For simplicity of illustration, we assume T R takes only values
0.0, 0.1, . . . , 1.0, so that g(T R) is a random integer between 0 and 10, producing
floating-point values through use of the <const> non-terminal in Fig. 12.

Mutation The geometric semantic mutation for arithmetic expressions returns the
offspring T M = T + ms · (T R1 − T R2) where T is the Boolean expression
undergoing mutation, T R1 and T R2 are random arithmetic expressions, and ms

is the mutation step, which is a constant real value.
The corresponding geometric semantic mutation for this grammar is g(T M) =

[0, g(T ), 0, 0, g(ms), 2, 0, g(T R1), 1, g(T R2)]. The genotypes of the random
arithmetic expressions (g(T R1) and g(T R2)) are generated using the initialisation
procedure for arithmetic expressions presented below. The genotype of the
parameter ms can be obtained by factoring the parameter appropriately as a valid
sentence of the grammar, and then deriving its genotype by parsing this sentence.
For example, ms = 0.001 can be factored into ms = 0.1 ∗ 0.1 ∗ 0.1 which is a valid
expression in the given grammar, and so its genotype can be derived, in this case
obtaining g(ms) = [0, 0, 2, 1, 2, 2, 1, 2, 2, 1].
Initialisation We can design an initialisation operator acting entirely on genotypes
inducing at the phenotype level the same behaviour as the initialisation procedure
used in GSGP. It works by mapping each phenotypic sub-component to the
corresponding genotypic sub-sequence, as illustrated in Algorithm 3.
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Algorithm 3: Initialisation: Generate a valid random Arithmetic genotype

1 Function RandomArithmetic (depth)
2 if depth = 1 or probability < 2−depth then
3 with probability 1/2: return [1] + [RndInt(numvar)]
4 (phenotype = < var >, x1 / x2 / etc)
5 with probability 1/2: return [2] + [RndInt(numconst)]
6 (phenotype = < const >, 0.0 / 0.1 / etc)
7 else
8 return [0] + RandomArithmetic(depth-1) + [RndInt(numop)]

+ RandomArithmetic(depth-1)
9 (phenotype = < expr >, (+ / - / * ), < expr >)

4.3 Operators for Classifier Domains

In the following, we first introduce the grammar we use for classifiers i.e., nested
if-expressions. We then derive crossover, mutation and initialisation operators on
GE genotypes for classifiers based on this grammar.

Grammar The grammar for classifiers considered is in Fig. 13. For simplicity of
illustration, this grammar has only three variables (x1, x2 and x3), three input
symbols (is1, is2 and is3), and two output symbols (os1 and os2). This
grammar can express any classifier of three variables with three input classes
and two output classes. However, the grammar and the corresponding geometric
semantic search operators can be generalised to any number of variables, input
symbols, and output symbols.

Crossover The geometric semantic crossover for classifiers is

T 3 = T 1IF CONDR ELSE T 2

where T 1 and T 2 are the parent classifiers, CONDR is a random condition
depending on one or more input variables, and T 3 is the offspring classifier.1

The corresponding geometric semantic crossover for this grammar is

g(T 3) = [0, g(T 1), 0, g(Rvar), g(Ris), g(T 2)]

1Implementation note: The unusual IF-ELSE syntax here means that (in Python) the code is a
single expression—which can be evaluated using Python’s eval()—rather than a statement,
which cannot.
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(A) <cf> ::= (<cf> if <cond> else <cf>) (0)
)1(>so<|

(B) <cond> ::= <var> == <is> (0)
| <cond> and <var> == <is> (1)

)0(1si=::>si<)C(
)1(2si|
)2(3si|

)0(1so=::>so<)D(
)1(2so|

)0(1x=::>rav<)E(
)1(2x|
)2(3x|

Fig. 13 Grammar for classifiers

where g(.) returns the genotype of its argument. For simplicity of illustration, the
random condition CONDR is of the form Rvar == Ris, where Rvar is a random
variable and Ris is a random input symbol. The offspring T 3 has the genotype
formed by substituting the genotypes of T 1, T 2, Rvar and Ris, (g(T 1), g(T 2),
g(Rvar) and g(Ris)) in the above pattern. The genotype of the random variable
and the random input symbol (g(Rvar) and g(Ris)) are both integers randomly
chosen from {0, 1, 2}, since in the grammar there are three input variables and three
input symbols.

Mutation The geometric semantic mutation for classifiers returns the offspring
classifier TM = IF CONDR THEN OUTR ELSE T where T is the parent clas-
sifier undergoing mutation, CONDR is a condition which is true only for a single
random setting of all input parameters, and OUTR is a random output symbol.
The offspring can be expressed as nested IF-THEN-ELSE statements with simple
conditions of a single input parameter each.

The corresponding geometric semantic mutation for this grammar is g(T M) =
[0, 1, g(OUT R), g(CONDR), g(T )]. The genotype of the parent (g(T )) is readily
available from the previous stage of the evolutionary process. The genotype of
the random output symbol (g(OUT R)) is an integer randomly chosen from {0,
1}, since in the grammar there are two output symbols. The genotype of the
random condition (g(CONDR)) is generated using the procedure in Fig. 14, which
illustrates it for three variables where each can take on n possible values.

Initialisation We design an initialisation operator acting entirely on genotypes
inducing at the phenotype level the same behaviour as the initialisation procedure
used in GSGP by simply mapping each phenotypic sub-component to the corre-
sponding genotypic sub-sequence, as illustrated in Algorithm 4.
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def generate_conjunction(3 variables):
result = []

result += [1, 1, 0]
# <cond> ->
# <cond> and <var> == <is> ->
# <cond> and <var> == <is> and <var> == <is> ->
# <var> == <is> and <var> == <is> and <var> == is

result += [0, random.rangrange(n)]
# <var> == <is> -> x1 == i3 (eg)

result += [1, random.rangrange(n)]
# <var> == <is> -> x2 == i2 (eg)

result += [2, random.rangrange(n)]
# <var> == <is> -> x3 == i2 (eg)

return result

Fig. 14 Procedure to build the genotype of a random condition of three variables

Algorithm 4: Initialisation: Generate a valid random classifier genotype

1 Function RandomClassifier (depth)
2 if depth = 1 or probability < 2−depth then
3 return [1] + [RndInt(numos)]
4 (phenotype = < os >, o1 / o2 / o3 etc (output symbols))
5 else
6 return [0] + RandomClassifier(depth-1) + [0,

RndInt(numvar), RndInt(numis)] +
RandomClassifier(depth-1)

7 (phenotype = (< cf > if < cond > else < cf >), < expr >, < var > ==
< is >, (x1 / x2 / x3 etc), (i1 / i2 / i3 etc), < expr >)

5 An Efficient Implementation of GSGE

A drawback of GSGP with crossover is the exponential growth of individuals due to
the fact that the offspring tree contains both parent trees, hence individuals double
their size at each generation. This problem applies to GSGE also. One solution,
proposed in [1], is to keep program size manageable using automated simplification
during the run.

Castelli et al. [19] proposed an implementation of GSGP that avoids exponential
growth by referring via pointers to a trace of the ancestry of individuals, rather than
storing them directly. We propose a new implementation of GSGP and GSGE also
based on tracing the ancestry of individuals, that however does not explicitly build
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and maintain a new data structure, but uses higher-order functions and memoization
to achieve the same effect, leaving the burden of book-keeping to the compiler. The
resulting implementation is fast, elegant and concise. A Python implementation of
GSGP with this feature (under 100 lines without comments) is on GitHub at https://
github.com/amoraglio/GSGP, while the GSGE code used in this paper is available
at https://github.com/jmmcd/GSGE.

Solution Representation We represent solutions directly using functions of the
programming language used to program the GSGP system. E.g., in a GSGP to
evolve Boolean expressions written in Python, the representation of a Boolean
expression is a Python (anonymous) function computing that Boolean expression,
and not a data structure (e.g., a tree) representing the Boolean expression.

Search Operators Geometric semantic crossover and mutation can be interpreted
as higher-order functions. We implement them directly as such: they do not
manipulate data structures representing solutions, but take directly as inputs the
(anonymous) parent functions and return (anonymous) offspring functions. The
returned offspring function calls the parent functions in its definition. In particular,
the parent function definitions are not substituted in the offspring definition, hence
there is no growth of the offspring function. The function calls to the parents in the
offspring implicitly build the data structure that relates offspring to parents all the
way up the ancestry without the need to use pointers, manage memory and maintain
an archive of past solutions.

Fitness Evaluation Even if individuals do not grow, evaluating them takes expo-
nential time, as querying a function for some input requires calling both its parents
on that input, which in turn need to call their parents on it and so forth, doubling
the number of calls at each generation. The complexity of queries on training data
can be reduced from exponential to constant time by memoization (i.e., caching the
output values of a function of previously encountered inputs rather than recomputing
them) of all individuals generated in the course of evolution. This works because
each individual caches its outputs on the training examples the first time its fitness
is computed, and later re-uses them when its descendants call it. This reduces the
number of calls needed to compute the fitness of an individual from exponential to
the number of parents, i.e. two, constant. Memoization is easily implemented as a
higher-order wrapping function (it is a standard library function in Python 3.2+).

Display of Best Individual As solutions are represented directly as compiled
Python functions, displaying them (in particular the best-of-run individual) would
require decompilation, which is not very practical. The technique we have used
to display functions that avoids both decompilation and direct representations of
functions during evolution consists of adding an extra implicit call structure in
individuals, where the extra structure implicitly keeps track of how to reconstruct the
final genotype of the individual (its source code) mirroring the first call structure (its
semantics) interpreting subroutine calls as function body substitutions (i.e. asking
the parents to return their source code to embed in the offspring source code).
Then individuals can be asked to display themselves by calling their associated

https://github.com/amoraglio/GSGP
https://github.com/amoraglio/GSGP
https://github.com/jmmcd/GSGE
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‘source code’ function. This can be implemented with minor additions to the code.
Naturally displaying the best individual after evolution takes exponential time as
its genotype is exponentially long. However, querying the final solution on unseen
values (i.e. making predictions) takes only time linear in the number of distinct
ancestors thanks to the memoization of individuals. The number of distinct ancestors
grows linearly with the number of generations (not exponentially, in the long term,
because the population size is fixed).

6 Computational Experiments

We next present extensive experimental results. Our goal is to compare GE and
GSGE representations. For comparison with previous work, we will include the
GSGP representation also. As the fitness landscape is unimodal, we expect a
semantic stochastic hill-climber to find the optimal solution efficiently. Therefore,
we will test both hill-climbing and evolutionary search algorithms. Finally, our
choice of test problems mimics that of [1]. Thus, we will compare:

• GE, GSGE, and GSGP representations;
• stochastic hill-climbing and evolutionary search algorithms;
• symbolic regression, Boolean, and classifier problems.

Based on theory, we expect that GSGE will obtain the same very good perfor-
mance as GSGP in these experiments, as the two systems perform an equivalent
search: the search done by GSGE on genotypes projected through the genotype-
phenotype mapping coincides with the search done by GSGP on phenotypes.

The training data in the symbolic regression problems is synthesized from
polynomials with coefficients uniformly sampled in [−1, 1]. The degree of the
polynomials is varied from 3 to 10, in order to scale problem difficulty. The test
data is resampled independently in the same way.

The Boolean problems are True, n-Parity, Comparator, Multiplexer, and Random.
True is the Boolean function which returns True for any input. Random is a Boolean
function whose truth table is randomly generated. Again, each problem is tested in
several sizes in order to scale problem difficulty. The training data consists of all
possible cases, and the test data is the same.

The classifier problems are synthetic. Each problem is characterised by its
number of input variables nv , number of possible values of these variables ni , and
number of possible output values no. Each input variable may take integer values
in the range [0, ni − 1]. The output is an integer in the range [0, no − 1]. It is a
simple synthetic function of the input variables, (x0 + x1) mod no. For example,
with nv = ni = no = 2, the classifier is equivalent to Boolean addition.

To facilitate easy comparison, we will report the percentage of hits and the stan-
dard deviation in this figure, for each problem, each representation, and each search
algorithm. A hit is a test case correctly solved by the best individual of the run.
On Boolean and classifier problems, a hit means the correct answer. On symbolic
regression problems, a hit means an output value within 0.01 of the correct value.
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Table 1 shows results. The GSGP results effectively replicate those reported by
Moraglio et al. [1], with very strong performance using both search algorithms,
often slightly better using hill-climbing versus evolutionary search. As expected, the
GSGE results are effectively identical to the GSGP results, confirming that GSGE
operators “see” the cone landscape characteristic of GSGP.

In contrast, GE itself does poorly, especially on the symbolic regression and
n-Parity problems. With GE, evolutionary search tends to work better than hill-
climbing. Note that the comparison to GE may be called unfair for two reasons.
Our implementations of both GE and GSGE do not use a feature which has come
to be common in GE implementations, sensible initialisation [17]; and in our
implementations of both GE and GSGE, non-coding tails have been cut. Recent
work has suggested that non-coding tails can improve performance in GE [20].

7 Discussion

This work had a two-fold motivation. The first was to extend the GSGP framework
to a new representation. The second was to show how to design provably good
search operators for GE. In the following we discuss these two perspectives in the
light of the work presented in this chapter.

Why Apply GSGP to GE? On one hand, GSGE has provably good performance.
On the other hand, the search on GE genotypes is exactly equivalent to the
search done by GSGP on phenotypes. If they are equivalent, why bother using
GSGE instead of GSGP? Expressing geometric semantic search operators in the
various GP representations (GE, Cartesian GP, PushGP, etc.) and more generally
for evolutionary approaches to evolving functions (e.g., evolving neural networks,
finite state machines, etc.) is a good thing for three reasons: (1) it allows for
unification and direct comparison of very different representations; (2) it unveils the
specific properties of a representation that are ultimately linked to good performance
(unimodal landscapes); and (3) it allows us to understand GSGP ideas in more detail.

The ideas of GSGP have transferred successfully to the GE representation. GE
search operators that see a unimodal landscape can be built for any problem, and
they can be built mechanically for any new grammar. By transferring GSGP ideas
to GE, we have learned that the GE map is modular, with compositional semantics,
and that this is a requirement for any new representation for GSGP. We have also
seen that GSGE solutions grow exponentially, but that their growth can be reduced
to linear.

Some of the specific benefits of GE are:

Constrained The grammar in GE can be used to enforce regularities and other
constraints to solutions.

Linearity The linear genotype allows for simple search operators.



Table 1 Results with GE, GSGE, and GSGP representations on various problems, at various sizes,
using hill-climbing (HC) and evolutionary (Evo) search

Problem GE/HC GE/Evo GSGE/HC GSGE/Evo GSGP/HC GSGP/Evo

Size avg sd avg sd avg sd avg sd avg sd avg sd

Polynomial 3 4.2 8.4 21.0 25.5 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

4 4.5 7.0 10.8 18.5 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

5 3.0 5.9 10.0 12.8 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

6 3.2 5.8 10.0 8.0 99.8 0.9 99.3 2.8 100.0 0.0 99.5 2.0

7 3.2 5.4 5.5 4.9 100.0 0.0 91.5 16.0 100.0 0.0 93.3 12.6

8 2.0 3.8 10.2 11.6 99.5 2.0 84.5 14.9 99.5 2.0 86.8 13.8

9 2.2 4.9 7.5 7.8 91.2 14.0 69.3 25.8 94.7 8.0 70.3 25.5

10 2.3 5.4 5.2 6.4 87.2 16.3 64.5 22.9 88.8 14.8 67.5 22.9

Boolean true 5 89.0 17.4 98.3 5.1 99.1 1.6 99.5 1.4 99.7 0.9 99.0 1.5

6 88.5 19.9 100.0 0.0 99.7 0.6 99.2 1.0 99.8 0.5 99.1 1.1

7 87.5 21.2 100.0 0.0 99.9 0.2 99.8 0.4 99.9 0.3 99.9 0.2

8 84.2 22.8 100.0 0.0 100.0 0.1 100.0 0.1 100.0 0.1 99.9 0.2

nparity 5 50.2 0.8 50.3 0.9 99.4 1.5 94.6 3.2 99.7 0.9 95.1 3.3

6 50.0 0.0 50.0 0.0 99.9 0.4 96.9 1.9 99.9 0.4 97.5 1.7

7 50.0 0.0 50.0 0.0 100.0 0.1 98.9 0.7 100.0 0.0 99.0 1.0

8 50.0 0.0 50.0 0.0 100.0 0.1 98.6 0.9 100.0 0.1 98.6 0.6

9 50.0 0.0 50.0 0.0 100.0 0.0 98.8 0.5 100.0 0.0 98.9 0.4

10 50.0 0.0 50.0 0.0 100.0 0.0 98.8 0.3 100.0 0.0 98.7 0.3

Comparator 6 75.6 1.9 73.8 4.7 99.9 0.4 98.8 1.2 99.9 0.4 98.4 1.8

8 75.5 1.2 78.9 3.9 100.0 0.1 99.6 0.4 100.0 0.1 99.6 0.4

10 75.3 1.0 79.3 3.2 100.0 0.0 99.9 0.1 100.0 0.0 99.9 0.1

Multiplexer 6 64.5 2.5 64.3 2.6 99.9 0.4 98.5 1.4 99.8 0.5 98.2 1.8

11 57.8 1.8 63.2 2.5 100.0 0.0 99.8 0.1 100.0 0.0 99.8 0.1

Random
boolean

5 66.5 4.5 64.2 4.6 99.7 0.9 96.8 3.4 99.6 1.1 96.6 2.9

6 61.5 4.3 61.6 4.2 99.9 0.4 97.9 1.6 99.8 0.5 97.9 2.0

7 58.0 3.1 60.5 2.6 99.9 0.4 99.2 0.8 99.9 0.3 99.2 0.7

8 56.7 2.3 58.3 2.0 100.0 0.1 99.2 0.5 100.0 0.1 99.1 0.5

9 55.1 1.3 56.7 1.3 100.0 0.0 99.3 0.3 100.0 0.0 99.3 0.4

10 53.6 1.2 55.0 0.9 100.0 0.0 99.4 0.2 100.0 0.0 99.3 0.2

11 52.6 0.8 53.8 0.8 100.0 0.0 99.1 0.2 100.0 0.0 99.2 0.2

Classifier 3,3,2 55.6 0.0 55.4 0.7 55.3 0.9 55.6 0.0 55.6 0.0 55.6 0.0

3,3,4 34.2 2.8 34.1 4.7 77.5 0.9 74.9 3.9 77.4 1.1 74.3 3.6

3,3,8 34.6 3.4 35.8 8.1 99.6 1.1 84.9 5.0 99.5 1.3 85.1 4.6

3,4,2 50.0 0.0 49.7 1.0 49.9 0.4 49.8 0.5 50.0 0.0 50.0 0.0

3,4,4 29.1 3.2 27.3 3.0 74.9 0.3 73.0 1.6 74.8 0.5 71.9 1.6

3,4,8 25.7 1.9 27.9 4.5 99.9 0.4 86.0 2.8 99.9 0.3 84.1 3.7

4,3,2 55.6 0.0 53.7 10.0 55.6 0.0 55.6 0.0 55.6 0.0 55.6 0.0

4,3,4 35.8 4.2 38.2 9.9 77.7 0.2 76.7 1.0 77.8 0.0 75.9 1.1

4,3,8 34.8 3.8 41.7 6.8 100.0 0.2 88.0 2.6 100.0 0.0 87.9 2.6

4,4,2 50.0 0.0 50.0 0.0 50.0 0.1 50.0 0.0 50.0 0.0 50.0 0.0

4,4,4 28.7 3.0 35.2 6.4 75.0 0.0 74.3 0.5 75.0 0.1 74.5 0.5

4,4,8 25.3 1.2 37.3 6.3 100.0 0.0 94.7 0.9 100.0 0.1 94.9 1.1

For classifier problems, problem size is given as nv, ni , no
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Developmental In GE a small genotype can express a large phenotype (via
wrapping). Even without wrapping, developmental effects can come in to play,
such as a greater importance of the earliest genes in the genotype.

Neutrality Unused codons can function as a “memory” of previous solutions.

How do these beneficial aspects of GE transfer to GSGE?

Constrained This property is linked to using grammars to enforce constraints,
and has been used at a phenotypic level with GSGE, i.e., grammars can be used
directly in GSGP, see e.g. [16].

Linearity The GSGE operators are not as simple as those in GE.
Developmental In GSGE, the developmental mapping is of less importance. The

size of the phenotype is directly proportional to the size of the genotype.
Neutrality Unused codons do not occur in GSGE. However, because GSGE

individuals functionally incorporate all ancestors, there is a type of “memory”.

From this analysis, it seems that GSGE uses the GE language to express a
fundamentally different search than that done by GE itself. When two different
perspectives are presented in a common language, it is often the case that their
features can be fruitfully combined to produce unexpected novel ideas and results.
This is where we are at the moment! In a broader sense, GSGE “completes”
GE as it makes a link with semantics and the unimodal landscape. All of these
seem to be ingredients necessary for evolving programs, the holy grail of GE. It
would be interesting to investigate how different ways of including semantics in GE
(e.g. attribute grammars) can be linked to GSGE.

8 Summary

In this chapter, we have recalled that GSGP sees a unimodal fitness landscapes for
any problem. Geometric semantic search operators are purely functional operators
that do not depend on the underlying representation. In principle, any representation
could be used if sufficiently expressive to describe these operators algorithmically.

In practice, geometric semantic search operators are naturally expressed in
functional languages as higher order functions. Even if in principle possible, it could
be practically impossible to express these operators in a language or representation
which does not naturally express functional relations and operations.

The GE encoding is rather complex, especially when using wrapping. It has been
shown to have low locality [21]: small changes of the genotype may correspond
to large changes on the phenotype, leading to highly disruptive operators (i.e.,
ripple effect) and highly discontinuous fitness landscapes. We have thus asked
the question: can we express geometric semantic search operators using the GE
encoding?

Expressing geometric semantic search operators on GE genotypes that act
equivalently to geometric semantic operators on expressions (phenotypes) requires
an understanding of how to invert the GE genotype-phenotype map, and project
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through this mapping search operators on the phenotype space to corresponding
search operators on the genotype space. Given the complexity of the GE mapping,
determining such operators rigorously may seem hopeless. Surprisingly, in this
chapter this goal has been achieved.

The key property of the GE mapping that allows this is its modularity: a
subexpression in the phenotype corresponds to an uninterrupted subsequence in
the genotype. This allows functional composition (at the phenotypic level) to be
expressed as plugging a subsequence into a sequence schema (at the genotypic
level). Geometric semantic operators are then expressed at a genotypic level as
specific sequence schema.

The genotypic definitions of geometric semantic search operators depend inex-
tricably on the specific grammar used, as they are designed around the genotype-
phenotype mapping. However, these operators can be derived mechanically by
parsing their phenotypic expression using the grammar, and then linearizing the
parse tree by depth-first traversal. We have put this methodology into practice, deriv-
ing geometric semantic crossover, mutation and initialisation for GE, equivalent to
existing GSGP operators for Boolean, Arithmetic and Classifier domains.

The new GSGE operators produce exponentially large solutions, similar to
GSGP. However, we have provided an elegant implementation of these operators
based on interpreting the operators as higher-order functions and making use of
memoization, which reduces the growth from exponential to linear (in the number
of ancestors).

Finally, we have reflected that GSGE, even if phrased using the same representa-
tion, is fundamentally quite different from standard GE.
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GE and Semantics

Marina de la Cruz Echeandía, Younis R. SH. Elhaddad, Suzan Awinat,
and Alfonso Ortega

Abstract The main goal of this chapter is to explain in a comprehensible way the
semantic context in formal language theory. This is necessary to properly understand
the attempts to extend Grammatical Evolution (GE) to include semantics. Several
approaches from different researchers to handle semantics, both directly and
indirectly, will be briefly introduced. Finally, previous works by the authors will
be described in depth.

1 A Comprehensible Introduction to Semantics in Formal
Languages

1.1 Syntax vs. Semantics

Most people, in their daily life, have an intuitive idea about the differences between
syntax and semantics: the structure or shape of the sentences is the syntax, while
their actual meaning, the message that the speaker is trying to convey, is the
semantics. Nevertheless, semantics of formal languages is a rather difficult concept,
perhaps due to the fact that, from a formal viewpoint, semantics do not exist. It
is thus reasonable that non-experts try to apply their previous common ideas to
formal domains. We’ll take a detailed look at this question, even though this look
must review most of the history of computers. Every computer scientist knows that
formal language theory is structured around the concepts of machines, grammars,
and (obviously) languages.
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1.2 Machines and Computability

In these first paragraphs we’ll provide an intuitive summary of a complex question
that connects Mathematics and the basis of theoretical computer science. The most
popular formal results applicable to this topic are the works by Kurt Gödel, Alan
Turing and Alonzo Church. In [16] Gödel proved the existence of undecidable
propositions in Arithmetics if one starts from the Peano axioms, a result that can
be extended to many formal systems. This opened the door to the existence of
uncomputable tasks, as computability can be considered a counterpart to decidabil-
ity. On the other hand, almost simultaneously, Alan Turing [31] and Alonzo Church
[9] introduced what is known as the Turing-Church’s thesis about the equivalence
between algorithms (computable tasks) and universal computational models (such
as Turing machines and Church λ-calculus). This thesis is a conjecture that nobody
has been able to prove or to reject, up to now.

At this point, these complex concepts are impossible to understand informally.
The difficult goal of the following paragraphs is simplifying these concepts without
introducing misunderstandings. For the formal and complete details, we refer the
reader to the references.

The Turing machine is the most powerful and expressive machine. It is, in
fact, the mathematical model for von Neumann’s architecture. That means that our
conventional computers (those we use on a daily basis) more or less implement the
Turing machine. The relationship between computability and the Turing machine is
very tight; any task solvable by a Turing machine is considered to be computable,
and we call an algorithm the way in which computable tasks are actually solved, in
terms of the instructions of a Turing machine.

There is, of course, an intuitive way of figuring out what the word computable
means. Computability implies algorithms and these could be naively considered
as some kind of general purpose recipes, that is, procedures that describe how
to perform computable tasks. Algorithms ensure that anyone that executes all
their steps, from the beginning to the end, will complete the task, even without
understanding what is being done. It is very important for correct algorithms
designed for computable tasks to perform each step and to complete all of them
from the beginning to the end. If just one step cannot be completed, or if all the
steps in the algorithm cannot be performed, either the algorithm is incorrect, or
we are facing an uncomputable task. There are different reasons why a task can
be uncomputable; in other words, it is impossible to device an algorithm that will
execute that task. Without going into technical details, consider the following two
tasks: make someone fall in love with you, and write all the natural numbers. Can
you describe your first love in detail? Do you think this task is computable? On
the other hand, how many natural numbers must you write to be sure you have
completed the task? Do you think one can design a procedure that, after having
executed all its steps, completes the task? Do you think this is a computable task?
Lots of tasks, like those, do not fit with any well written algorithm and, hence, are
uncomputable.
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Computer science links the expressive power of machines with the complexity
of the problems they can solve. In fact, there is a parallel hierarchy that relates
problems and machines, according to their complexity and power.

All types of computing machines share the same kind of elements:

• A way to represent all the different situations in which the machine can be.
These elements are called states;

• A way for the machine to change from one state to another. These elements are
named transitions;

• A way to store additional information needed to perform the task under
consideration. More sophisticated storage devices result in more powerful
machines.

We can informally characterize machines by their additional storage devices as
follows:

• A Turing machine has a random access storage device implemented by a
bidirectional tape that can be accessed randomly. In every computing step, the
tape head can move forward or backwards, after possibly changing the contents
of its current position in the tape. A random access memory can be seen as a
matrix, each of whose cells can be accessed by its position. It is easy to figure
out how this can be implemented with a bidirectional tape. This kind of storage
is the most sophisticated we will consider and is, in fact, the kind of memory
you can find in the RAM of your PC.

• The simplest interesting computing devices are called finite automata. They can
be found all around: the software for controlling vending devices for soft drinks
or snacks, for instance, have such a simple logic that it can be described by
means of finite automata. Finite automata have no additional storage devices.

• The last type of computing machines we are interested in are named push down
automata. Their additional storage device is a stack of cells. Stacks are LIFO
(Last In-First Out) devices. Inserting and extracting information is only allowed
at just one of the ends of a stack. Thus, the stored information is pushed-down
when a new bit of data enters the stack, and it is popped-out when a bit of data is
extracted. It is easy to see that stacks are less sophisticated than random access
memories.
Stacks can seem a rather artificial mechanism to be included in a computing
device. Push-down automata were introduced while looking for computing
devices specifically designed to analyse the syntax of the high-level program-
ming languages invented since the 1950s.
Ignoring technical details, try to figure out how a stack would help to check if
the two kinds of parentheses ( and ) are balanced in an arithmetic expression.
One can, for example, push down each left parenthesis ( into the stack and pop
one whenever a ) is found. It is easy to see that, based on this mechanism,
sequences of paired elements can be checked in reverse order, or something
counted and checked later against some other thing that should occur the
same number of times, or a related number of times. These conditions are
the basic syntactic constraints one must check while analyzing the syntax
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of programming languages. Think, for instance, about checking if every else
clause comes after a corresponding then clause.

How can these machines be linked to formal languages, including programming
languages? From our viewpoint, everything in this domain is expressed by means of
symbols that play the role of words in natural languages, plus sequences of words
that play the role of sentences. A language is just a set of words. In general, all
the machines we have mentioned can be described in abstract form as language
processors, which means that a computation performed by anyone of them will take
a word as input, start from its first symbol and perform a sequence of actions until
reaching the last symbol, or until it cannot go on and stops. These machines have
mechanisms to determine if a given string is accepted or rejected, thus they can also
be considered as language recognizers.

But how can we relate tasks of different degrees of complexity, with languages
and machines? Any problem can be expressed as a question that can be answered
in different words. The set of these words conforms the language of the solutions
for the problem. Any possible solution is represented by a word in this language,
and every word in the language represents a solution to the problem. From this
perspective, a machine is able to solve a problem if it only recognizes words that
correspond with the solutions to the problem. It is easy to imagine that the structure
of the words that are solutions to difficult or complex problems is much more
sophisticated than the structure of the solutions to simpler problems.

But why are we talking about computability and machines? Because problems,
tasks, and their characteristics, such as their complexity, or the kind of machine that
is needed to tackle each type of task are informally considered semantic questions.

1.3 Grammars and Languages

Grammars can be considered the formal counterpart associated with syntax in
formal language theory, as their rules fully describe the form and structure of
the words belonging to the language they generate. It is worth mentioning that
linguistics and theoretic computer science are quite close, both intrinsically linked
to algebra. Formal grammar theory was proposed and studied in the late fifties
and the early sixties by Noam Chomsky and Schützenberg [5–7]. Marcel-Paul
Schützenberger was a Doctor in Mathematics and Medicine. As a mathematician, he
was interested in formal languages, information theory and their relationship, and
also in linguistics. Noam Chomsky is one of the most relevant linguists in modern
history. He introduced the idea of a formal grammar to explain the construction of
correct sentences in natural languages. They shared the same historical period with
the first relevant developments of modern computer science. Their ideas were easily
and quickly used as tools to define formal languages, where algorithms programmed
in computers are specified.
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There are several types of grammars in the Chomsky (or the Chomsky-
Schützenberger) hierarchy, such as linear, regular, context-free or unrestricted
(type 0) grammars. As with natural languages, formal grammars are devices able
to generate sets of correct strings (languages). Rather than generating natural
languages, they generate formal languages, but the mechanisms are the same.
Grammars form a hierarchy based on their expressiveness, in such a way that the
less expressive grammars are included in the more expressive, while the latter can
generate strings that comply with more sophisticated constraints. Each family has
its own mechanisms to generate strings:

• Regular grammars can generate strings that grow from just one end (always the
same) of the string. Notice that this is the simplest way to make strings grow
(the simplest growth pattern): one starts from a symbol and adds new symbols,
always at the same end.

• Context-free grammars use more complex growth patterns. Roughly speaking,
they add two main new mechanisms:

– Strings can grow from both ends at the same time and in the same (or
related) way, i.e. symbols can be added simultaneously to both ends of
the string. Thus, balanced parenthesis in arithmetic expressions can be
generated like this: (), (()), . . . , (. . . (()). . . ).

– Strings can grow at any position, not just at the ends of the string. This
is a straightforward mechanism to describe the structure of a string as a
sequence of patterns that can be handled separately. It is possible to do
something similar with regular grammars, but in a slightly more tedious
way.

Context-free grammars are very important for this chapter. They have been
designed to express the syntax of high level programming languages.

• Unrestricted grammars can make their strings grow without any restrictions.
They are the most expressive grammars.

The Chomsky hierarchy also gives rise to a correspondence among machines
and grammars. Thus, regular grammars and finite automata, context-free grammars
and pushdown automata, are two couples of equivalent models. To study these
equivalences, machines are usually considered as language recognisers and a
machine is supposed to recognise the language generated by a grammar (conversely,
a grammar generates the language recognised by a machine).

From this point of view, Turing machines are equivalent to unrestricted grammars
(or type 0 grammars). Given that these machines are able to execute any algorithm,
this equivalence implies that unrestricted grammars can express any algorithm
designed to execute any computable task.

This conclusion is very relevant: there exists a kind of grammar able to express
every detail of whatever algorithm, and every step needed to solve any computable
task. Remember that computer science informally binds grammars and syntax, so
that everything in an algorithm can be considered syntactic. This eliminates the gap
in natural language between the message carried by a sentence and the actual form
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and structure of the sentence itself, which means that there is no need for semantics
in formal language theory. . . if you are willing to cope with type 0 grammars, of
course.

1.3.1 Let Us Try to Formalize

Formal Notations for Grammars

In this chapter we are working with formal models and objects. In every section we
will introduce first the notation we use. Every formal grammar has:

• Two disjoint alphabets or non empty sets of symbols: non terminals (the set
of symbols that can be changed while generating strings) and terminals (the
symbols that cannot be changed further). Valid strings derived by the grammar
are made exclusively of terminal symbols. These two sets will be respectively
denoted as N and T .

• A set of derivation rules that establishes how non terminal symbols can be
changed into other strings of symbols. The shape of these rules determines the
class of the grammar. Let us analyze those of interest for this chapter:

1. A context-free derivation rule has only a non terminal symbol at its left
hand side. The right hand side is unrestricted, i.e. it belongs to the set (N ∪
T )∗. The star operator (∗) indicates that the string to its left can be repeated
any number of times (also zero). We will use λ to represent a string without
any symbols.

2. A type 0 (unrestricted) derivation rule only has one constraint: its left hand
side must contain at least one non-terminal symbol.

• Grammars generate languages by applying their derivation rules successively,
starting from a specific non terminal symbol, called the axiom of the grammar,
until just terminal symbols are obtained.

As an example, we’ll show the formal notation for a context-free grammar which
generates the language L(n)n of balanced parentheses. This representation is made
of the two alphabets (N and T ), the axiom, and the rules:

G(n)n = {{S}; {(, )}; S; {S → (S), S → λ}}
Given that λ has 0 symbols, it seems clear that, when used as the right hand side

of a derivation rule for a non-terminal (in our example S) it just removes the non-
terminal symbol in the current string. In our example, if this λ rule is applied to the
axiom, the empty string is generated, i.e. the axiom is removed and a string with no
symbols is generated.

Using the same notation, the following type-0 set of derivation rules can be
written:

{S → λ, S → SAB,AB → BA}
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Fig. 1 Derivation tree for the string ((())), generated by G(n)n . The axiom is placed on the top,
as the root of the tree. The axiom is always the root of all derivation trees derived by a grammar.
Notice that the derivation tree hides the order in which rules are applied. Each possible choice is a
different derivation. In this case there is only one possibility: the derivation represented in short as
S ⇒ ∗((())) and in detail as S ⇒ (S) ⇒ ((S)) ⇒ (((S))) ⇒ ((()))

Where the only type 0 rule is the last one AB → BA that indicates that the two
symbols AB can be exchanged, generating BA. We will revisit this idea in following
sections.

Derivation Trees

Another important object related to grammars and languages is a derivation tree.
Derivation trees are graphical representations of the derivation processes. They
make it possible to see a complete derivation at a single glance. Look at Fig. 1 to see
how derivation trees are built.

Figure 2 shows an example of type-0 derivation tree.
In the remainder of this paper we will introduce the problem of breaking the

expressive power of context-free grammars, specially when used in GE. We will
try to summarize different approaches by other authors, and explain how we do
it: through Evolution with Attribute Grammars and Evolution with Christiansen
Grammars. In addition, in the remaining sections, we will complete our reflections
about the questions we have highlighted so far: the meaning of semantics in
formal models; the balance between expressive power and comfort when designing
solutions to real problems; the different techniques to design each different formal
model; and so forth.
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Fig. 2 Derivation tree for the
string anbn, generated by
G0anbn =
{{S,A,B}; {a, b}; S; {S →
SAB,AB → BA,A →
a, B → b}}. Notice that the
positions of non-terminals
symbols A and B must be
properly exchanged before
they can derive the terminal
symbols a and b. Otherwise a
string could be generated with
an a to the right of a b. We
will revisit this idea in next
section when talking about
synchronization processes
with type-0 grammars

2 Breaking the Expressive Limits of Context-Free Models
with a Semantic Approach

In previous sections we have introduced the equivalence between Chomsky’s type-0
grammars and Turing machines. Let’s look at this in more detail. The most relevant
feature of unrestricted grammars, which gives them their expressive power, is the
ability to take into account the context during the process of string deriving. This
capability can be briefly described as the ability of expressing different derivations
for the same symbol, depending on the substrings around it. It is easy to realize that
this fact implies that computation is based on signal propagation implemented by
context sensitivity; in other words, changes in strings needed to properly express
their structure are made by sending signals that will provoke the change when they
arrive at the proper place. Readers familiar with programming Turing machines will
realize that this is the same mechanism which must be used to change the contents
of the tape, to make the computation progress. It is a rather mechanical, but boring
procedure, somewhat similar to programming in assembler languages. Computer
engineers have developed a bevy of higher level programming languages and tools
to hide these details and ease the programming process.

This evolution has been mimicked in the history of the design of programming
languages and their compilers. The first compiler, developed in the fifties by the
FORTRAN team, led by John W. Backus, took 18 man years during 2 years.
Nowadays, computer engineering students develop their own compilers for similar
programming languages in just one semester. This has been made possible because
of advances in the tools developed to standardize and automatize this task. One of
the milestones was structuring compilers around a context-free kernel. In this way,
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a beautiful theoretical paradox arises: unrestricted grammars are the only family
of grammars able to express any algorithm; nevertheless, context-free grammars,
less expressive and able to embody only context-free constructions, are the chosen
family to develop compilers for high level programming languages, whose goal is
easing the writing of algorithms, so that the computer can solve any computable
task whatever.

Once this scenario has been properly introduced and depicted, we can define
semantics. In our opinion, and from the point of view of formal language theory,
the semantics of a programming language can more easily be defined as something
that is missing. Let us assume a given programming language and the context free
grammars for its syntax. We can informally conclude that the semantics (of this
language) is what is missing in context-free grammars before it can be completely
described. We can also conclude that this name (semantics) originates by opposition
to the term syntax, usually bound to grammatical constructions.

2.1 GE and Semantics

Grammar Evolution (GE) uses context-free grammars (CFGs) to control the map-
ping process from the genotype of every possible solution in the population into its
corresponding phenotype. This ensures the syntactical correctness of the phenotypes
that, in fact, are frequently programs.

Once we have set semantics in its context, this section intends to introduce
briefly different attempts to extend the expressive power of context-free grammars
when used in GE, before describing in detail our own proposals, based on attribute
grammars and Christiansen grammars. Some of the attempts have proposed the use
of tree-adjoining grammars; a formal model whose expressive power is close to
that of mildly context-sensitive grammars [19, 24, 25, 33–35]. Others add semantics
indirectly, back-propagating information from the phenotypes; these ideas have also
been developed in other domains [3, 15, 18, 28, 29, 32]. A few incorporate semantic
information by means of probabilities. That this is actually a semantic approach
is not so easy to see, for probabilistic context-free grammars are a subfamily of
the context-free grammars initially included in the classical Chomsky hierarchy
[4, 20, 21, 23].

Our own extensions focus specifically on semantics in the way previously
described. In the remainder of this chapter we will describe in more detail the
two models used in our proposals (Attribute Grammar Evolution and Christiansen
Grammar Evolution [13, 27]), from a perspective focused on their expressive power,
programming techniques, etc. Then we describe our proposals themselves, before
ending up with some conclusions and future research lines. These proposals con-
tinue previous attempts to extend GE with attributes in specific domains [10, 11, 26].
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2.2 Attribute Grammars

2.2.1 Introducing Attribute Grammars

Donald Ervin Knuth coined the term attribute grammar [22] to refer to a model
specifically devised to be used as the core of compilers for high level programming
languages. As previously mentioned, attribute grammars fill the semantic gap
between context-free grammars and unrestricted Chomsky grammars, so that the
former become computationally complete models, by adding to them what is called
an attribute system that includes the following components:

• To each symbol in the context-free grammar, we add a set of variables (con-
sidered as names linked to a domain, in the same way as variables are declared
in high level programming languages). For instance, int a; or float b;
or complexNumber c1;, although in the last case one must previously
define which domain is represented by the name complexNumber;. These
attributes are considered as local variables belonging to the symbols with
which they are associated. They store semantic information about them. While
deriving words from the grammar, whenever a derivation rule is applied to
a symbol, that symbol will also store in its variables the associated semantic
information. In this way, after a derivation is completed, the attribute grammar
will have computed the semantic information for all the symbols involved in the
derivation.

• A set of global variables (or name-domain links) called global information is
accessible at any moment from any point of the grammar. They are used to store
useful intermediate information during the derivation process.

• Each derivation rule is associated to an arbitrary algorithm that contains a set
of operations called semantic actions. This algorithm computes the value of the
attributes of some symbols as a function of the values of the attributes of other
symbols. As will be explained in further sections, these semantic actions can be
divided into two groups, depending on whether the computed attributes belong
to symbols on the left or on the right side of the context-free rule.
Derivations of attribute grammars produce two different results:

– The same string that the context-free kernel would derive.
– The results of the computation associated with the algorithms spread across

the semantic actions. The fact that any algorithm can be used, implies
that attribute grammars are computationally complete. Given any algorithm
Ψ , there is a trivial procedure to find an attribute grammar that runs this
algorithm: its context-free kernel has just one symbol (the axiom) and just
one rule, which generates λ from the axiom. The associated semantic action
runs Ψ . The eventual inputs and outputs for Ψ can be implemented as
global variables.
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2.2.2 Propagation Mechanisms in Attribute Grammars

The name propagation is given to the process that computes the value of the
attributes of the symbols in the derivation trees generated by an attribute grammar.
Propagation is the main programming technique in attribute grammars. While
designing an attribute grammar, one must decide how to propagate attributes in
the derivation trees from one node to another (technically, from the values of the
attributes of the symbols contained in the first node, to those in the second). This is
a graphical way of programming, for one actually draws arrows between the nodes
to assign values to the attributes of the symbols. Propagation is specifically added
to the grammar in the semantic actions of each derivation rule. Propagation can be
split into two groups:

• Synthesis, when the values of the attributes of the non-terminal symbol on
the left of the rule are computed from the values of the attributes belonging
to the symbols on the right. Synthesis is graphically represented by means of
ascending arrows in the derivation tree.

• Inheritance, when the attributes of the symbols on the right of the rule are
computed as functions of the attributes of the symbol on the left of the rule,
or of the symbols preceding the right hand side symbol under consideration.
Inheritance is graphically represented as descending or horizontal left to right
arrows.

This classification is extended to attributes. An attribute computed by means of
synthesis (or inheritance) is called synthesized (or inherited).

2.2.3 Attribute Grammar Examples

We have previously mentioned that attribute grammars are computationally com-
plete models. To compare the programming techniques of context-free and attribute
grammars, it could be interesting to show an example of an attribute grammar that
solves a simple problem (a context-free problem). This example will also be used to
show a possible formal notation to describe attribute grammars.

We shall design an attribute grammar for generating language Lanbn =
{anbn, , n ≥ 0} from a context-free kernel that generates the language Lanbm =
{anbm, , n,m ≥ 0}, which is actually a regular language. It is easy to see that
the context-free grammar induced by the following set of derivation rules (where
S is the axiom and λ, as previously stated, represents the empty word) generates
Lanbm . Ganbm = {S → AB,A → aA,A → λ,B → bB,B → λ}. The shortest
word generated by Ganbm is λ, and this grammar can generate any word containing
any number of a symbols (including 0) followed by any number of b symbols
(including 0 and not necessarily the same). The following are a few examples of
words generated by Ganbm : abb, bbb, aaaa, aaa, aaaaab.
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Let us describe how we could design the attribute grammar:

1. First we will compute the number of symbols a generated. Attribute na will be
associated to symbol A and used for that purpose. This could be easily done by
synthesis, taking into account that

(a) na = 0 for λ, the word generated by the rule A → λ;
(b) If a derivation adds a new a by means of the rule A → aA, the value of na

is increased by 1. That is, the A in the left hand side computes the value of
its na by adding 1 to the value of the same attribute associated to A at the
right hand side.

2. Then, the root of the subtree for the B block, that contains the first B symbol,
inherits the total number of a symbols and decreases it by 1 each time a symbol
b is generated by means of the rule B → bB.

3. Correct words must be finished by using the rule B → λ if and only if the
current value of na is 0. It is easy to see that attribute na associated to B is
given its initial value through inheritance.

Now we will formally describe this attribute grammar. The following notation
enumerates the initial attributes of the grammar: {A{int na}, B{int na}}. Semantic
actions should be added in the proper place of the derivation rules, using, for
example, a notation similar to language C. Action number 1.a from above, for
example, could be written like this: A → λ{A.na = 0; } The complete attribute
grammar is shown below:

Gaanbn = {
{A{int na}, B{int na}};
S;
{

A → λ{A.na = 0; }
A1 → aA2{A1.na = A2.na + 1; }
S → AB{B.na = A.na; }
B1 → bB2{B2.na = B1.na − 1; }
B → λ{if (B.na ! = 0)error(); }

}
}
In the next sections we will review examples related to this problem.
Consider the following language: L�a=�b

= {w ∈ {a, b}∗|�a(w) = �b(w)}.
This way of defining the language uses two new operators:

• A new use for the ∗ operator: when applied to an alphabet it refers to the set of
all the possible strings that can be built with symbols taken from the alphabet.

• �symbol(string) indicates the number of times the symbol occurs in the string.

The following attribute grammar generates L�a=�b
.

Ga�a=�b
= {

{S′, S{int na; int nb; }, X{int na; int nb; }};
{a, b};
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{
S′ → S{if (S.na ! = S.nb) error(); }
S1 → XS2{S1.na = S2.na +X.na; S1.nb = S2.nb +X.nb; }
S → λ{S.na = 0; S.nb = 0; }
X → a{X.na = 1;X.nb = 0; }
X → b{X.na = 0;X.nb = 1; }

}
}
Notice that symbol X represents either an a or a b. Only two attributes are needed

(na and nb) and both are synthesized in the same way:

• For symbol X, they are initialized whenever X derives an a (na = 1 and nb = 0)
or a b (na = 0 and nb = 1);

• For symbol S, they are initialized to 0 in the λ rule;
• They are incremented in the recursive rule for S;
• The rule for the axiom checks that na = nb.

Theoretical Expressive Power vs. Comfort

We can now pose the following question: Can we easily design a context-free
grammar that generates the language L�a=�b

? or would it be too complex and time-
consuming?

The complete answer requires answering a previous question: can we prove
that this language is context-free? A formal proof for a positive answer would
require showing a context-free grammar that generates the language, or a push-
down automaton that accepts it. In our opinion, this problem is easier to solve by
means of a stack than with a grammar. The formal definition of push-down automata
is out of the scope of this chapter, but it is easy to see that a stack is enough:

• The shortest word is λ, and it is always trivial to accept λ (there is an standard
technique for this, when designing push-down automata, by means of a specific
final state which is accessed when λ must be accepted).

• Excluding λ, in any intermediate step the automaton could face either a or b

symbols. Both can be handled in the same way:

– The stack can be used to store the unbalanced symbols; that is, symbols a

without their corresponding b and the opposite. This implies that the stack
can contain

Nothing, when �a(w) = �b(w) where w is the current portion of string
having been processed;
n symbols a; when �a(w)− �b(x) = n;
n symbols b; when �b(w)− �a(w) = n.

– If the next symbol is a (b) and the stack contains as (bs), push a (b) into
the stack.
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– If the next symbol is a (b) and the stack contains bs (as), pop the top of the
stack.

– It is obvious that, after processing a correct string with the same numbers
of a and b symbols, the stack will be empty.

Although this is just an informal guide to design a push-down automaton that
recognizes L�a=�b

, it outlines a formal proof that this language is context-free. Once
we are reasonably sure that L�a=�b

is context-free, we should be able to design a
context-free grammar to generate it. Let us look at a possible approach. Perhaps you
remember Bolzano’s theorem for continuous real functions. You can find it in any
Calculus book [1, 2, 17].

Theorem 1 If a continuous function defined on an interval is sometimes positive
and sometimes negative, it must be 0 at some point.

Keep this idea in mind and try to apply a similar theorem in the following informal
explanation that outlines the formal design of our context free grammar: Let us try
to imagine all the possible structures of a word w that belongs to L�a=�b

. It can start
and end by different symbols (either a or b)?, as in aabb, bbbaaa; or it may start
and end by the same symbol, as in abba, baab.

We will denote |w| to represent the length of word w (the number of its
symbols). Let us consider the following integer function that takes a string as a
parameter: f (w) = �a(w)− �b(w). It is obvious that this function is defined on the
integer interval [0, |w|], and that it is sometimes positive and sometimes negative.
Figures 3, 4 and 5 show the values taken by f for all the subsequent substrings of
the following three words belonging to the language, that will be important in the
descriptions below: aaabbb, aaabbbbbaa and aaabbbbbaaabbbaa.

In the grammar we are discussing, we will represent any valid string by the
non-terminal symbol S, which also represents the axiom. In Fig. 3 you can see a
very simple case: string aaabbb starts and ends by different symbols. It is simple,

Fig. 3
�a(aaabbb)− �b(aaabbb).
aaabbb is an example of a
string that belongs to L�a=�b

and starts and ends with
different symbols
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Fig. 4 �a(aaabbbbbaa)−
�b(aaabbbbbaa).
aaabbbbbaa is an example
of a string that belongs to
L�a=�b

and starts and ends by
the same symbol (a). It shows
that in similar cases there is a
point where f equals 0. This
point splits the string in two
substrings that also belong to
L�a=�b

and in this case they
start and end by different
symbols, as in Fig. 3.
In this case
f (aaabbb) = f (bbaa) = 0

Fig. 5
�a(aaabbbbbaaabbbaa)−
�b(aaabbbbbaaabbbaa).
aaabbbbbaaabbbaa is
another example of a string
that belongs to L�a=�b

and
starts and ends by the same
symbol (a). This case is more
complex, for the string can be
split in two ways: aaabbb

and bbaaabbbaa; or
aaabbbbbaa and abbbaa

because the as cannot be balanced until the string ends at the last b. This means that
f just takes the value 0 at the beginning and the end of the string.

An important characteristic of this kind of strings is that, if the first and the last
symbol are removed, one gets a valid string that also belongs to L�a=�b

. In our
example, both aaabbb and aabb belong to the language. This is a general fact that
can be coded by a derivation rule for our grammar: S → aSb (together with the
symmetric rule S → bSa).

All the strings that start and end by the same symbol have a more complex
structure. For all of them, f must take the value 0 at least in one intermediate point.
This happens because, if a string w starts by a, f starts being positive, and if w ends
also by a, the last-but-one value of f must be negative (−1, in fact). You can see
this situation if Fig. 4. A similar situation happens for words starting and ending in
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symbol b: f (w) starts getting negative and ends positive (1) just before the last b

symbol. Recall Theorem 1: a very similar theorem is applicable here.1

This is the second relevant and important factor that will help us understand the
structure of the strings belonging to L�a=�b

. It has been suggested informally that if
you put together two strings belonging to the language, the result will also belong
to it. These substrings can be of any kind. So, if we have a string starting and ending
by the same symbol, it can be split into two substrings, each with the same number
of as and bs, precisely at the intermediate point where function f goes through the
value 0. We can code this amazing fact by means of the rule S → SS.

Additionally, we must take into account the shortest string in L�a=�b
: λ that

obviously satisfies f (λ) = 0.
We have given strong, although informal evidence that the set of rules {S →

SS, S → aSb, S → bSa, S → λ} always generates strings in L�a=�b
. The

additional needed complete formal proof that no string in L�a=�b
requires different

rules than those discussed above, is out of the scope of this chapter. We can thus
assume that the context free grammar Gcf�a=�b

= {{S}; {a, b};S; {S → λ, S →
aSb, S → bSa, S → SS}} generates L�a=�b

.
What is easier to design? A context-free grammar that represents a language,

or an attribute grammar? The answer to this question is subjective and depends
on a subtle magnitude, difficult to measure, that we could call comfort. We think
most software developers and programmers will feel more comfortable with the
attribute version, although mathematicians and algebraists may prefer the context-
free version. This is what we mean by the title expressive power vs. comfort. We
will revisit this question later in this chapter.

For the sake of completeness, we shall look at a typical problem solved by
attribute grammars in computer science, specifically when developing compilers.
In most high level programming languages, one must declare variables before
using them. Compilers usually ensure this by means of a global symbol table,
usually implemented by means of a dictionary. A dictionary is an abstract data
type that makes it possible to store and retrieve information associated to a key.
High level programming languages usually need lots of semantic information about
the symbols defined in the program, to properly check all the semantic constrains a
correct program has to comply with, and also to generate successfully the equivalent
low level code (usually in machine language). The names of the variables are usually
considered to be their keys. The semantic information includes: the basic type of the

1Let’s consider f as f : [0, |w|] → [−|w|, |w|] so that f (i) = �a(w[0, i]) − �b(|w[0, i]) and
where w[0, i] is the subsequence of w respectively starting and ending in 0 and i. It is clear that
|f (i + 1) − f (i)| = 1∀i. For this step of the proof, it is easy to consider either a version of
Bonzano’s theorem for this kind of functions; or to define a function to which Bolzano’s result
could be applied. In the first case, notice that for every zero of f (∀i|f (i) = 0); the sequence of
points {(i,−1), (i, 0), (i, 1)} (or {(i, 1), (i, 0), (i,−1)}) always belongs to f . In the last case, one
could consider the continuous function f ′ that can be drawn connecting consecutive points of f or
even a polynomial interpolation that preserves its points (all of them or at least the most relevant,
around its zeros).
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variable; whether it is a structure or a simple variable; or the types of the arguments
and the return variable of a function, among others.

The syntax of high level programming languages is represented by huge gram-
mars, sometimes with hundreds of rules. A simple example will show how to solve
the declaration problem. Most programming languages include rules for declaring
identifiers similar to the following:

{
. . .

program → declarations sentences

declarations → declaration . . .

declaration → type identifier
. . .

}
When an identifier is declared using this set of rules, it is easy to imagine the set

of attributes and semantic actions needed to propagate the semantic information
of the identifier (for example its type) in such a way that it can be inserted in
the symbol table after the last rule is applied. When the compiler is analyzing
the sentences, rules similar to the following make it possible to test arithmetic
expressions involving variables as operands.

{
. . .

sentences → sentence

sentence → assignment

assignment → identif ier = expression;
expression → expression + expression

. . .

expression → numericConstant
expression → identifier
. . .

}
These rules can be used to generate assignments like the following:

{
. . .

x = y + 3;
. . .

}
Where x and y are identifiers and 3 is a numeric constant. Whenever an

identifier is used, the corresponding rule can access the symbol table to recover
the information associated with the variable (using its name as the key). So, in the
rule assignment → identifier = expression; the compiler will recover first the
information about the variable at the left side of the assignment (x in the example)
to test, for instance, that x has been previously declared. In a similar way, in the
rule expression → identifier the symbol table is accessed to get the semantic
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information about y. This is a standard use of attribute grammars, together with
global information.

2.2.4 Comparison with Chomsky Type-0 Grammars

This section try to show in a comprehensible way the most common techniques to
design Chomsky type-0 grammars. We have previously introduced type-0 derivation
rules by means of this simple example:

{S → λ, S → SAB,AB → BA}
It is easy to complete these rules to design a grammar that generates the previously
described language L�a=�b

. Notice that the following type-0 grammar G0�a=�b
=

{{S,A,B}; {a, b}; S; {S → λ, S → SAB,AB → BA,A → a, B → b}}
generates L�a=�b

.
After all the As and Bs are in their proper positions, one can remove S (applying

the λ rule) and translate upper case letters into lower case (by means of A → a and
B → b).

• The shortest string λ is generated by the rule S → λ.
• The rule S → SAB generates A and B couples.
• The context dependent rule AB → BA can be used as many times as needed

to place each symbol in its proper position, as in the following derivations:
SABABABABABAB ⇒ � SAAAAAABBBBBB;
SABABABABABAB ⇒ � SBBBBBBAAAAAA;
SABABABABABAB ⇒ � SBBAAABABAABB.

• Once all the As and Bs are in their proper positions, one can remove S (applying
the λ rule) and translate the upper case letters into the lower case equivalents by
means of rules A → a and B → b.

It is worth devoting a couple of minutes to think about what can be concluded
from the context dependent rule in this example, compared to the way in which
the symbols are generated using context-free grammars. In the latter case, one
must ensure that every correct combination of the symbols in the language will
be generated by means of explicit rules. This means that, if one wants to generate
independent blocks of as and bs, one must do so by means of explicit derivation
rules (as, for instance, S → aSb). Remember, nevertheless, the different approach
needed to ensure that we can generate L�a=�b

with context-free resources and by
using additional mathematical tools, such as Bolzano’s theorem. With type-0 rules,
it is enough to generate the proper number of symbols of each type, and then use the
standard context-dependent mechanism to exchange their positions. At this point, it
is interesting to compare strictly syntactic models that generate L�a=�b

(context-free
and type-0 grammars) with semantic models (such as attribute grammars). We will
revisit this question later: exactly where are the semantics?

We complete our examples of how to design Chomsky type-0 grammars with
one generating the other previously described language: Lanbn . This example hides
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a basic, absolutely relevant computing problem: synchronization, usually solved by
a feature inherent in different models of computation (not just grammars): signals.

The previous type-0 example generates the desired structure (SAnBn), among
many others. So, our main concern will be to avoid generating strings with just
terminal symbols from wrong structures (for example, from SAAABABBB). In
our opinion, the key to solve this problem is to express it in terms of synchronization
in the following way: we cannot generate terminal symbols (as and bs) until after
having finished exchanging A’s and B’s, attaining the right structure AnBn. It
seems clear that if we wait until this point, we’ll only get strings belonging to Lanbn .
Chomsky type-0 grammars provide different powerful techniques to solve this
issue. One can take advantage of context dependent rules to synchronize processes
implementing signals. In computer science, a signal is just some information that
moves across some spatial structure. The use of signals to convey information at a
distance is as old as man, in the form of noise (whistles, tom toms), visual signals
(smoke or fire, naval flags) or electric signals (telegraph, telephone).

Consider the following type 0 derivations rules that implement signals to ensure
synchronization in the generation of Lanbn (these rules should be added to some of
the rules in G0�a=�b

above): {S → α, αA → aα, αB → bβ, βB → bβ, β → λ}.
Let us study them informally by means of the following relevant examples: what

happens when you start from SAAABBB? And, what happens when you start from
SAABABB?

1. There is just one derivation that generates a string with only terminals:
SAAABBB ⇒ αAAABBB ⇒ aαAABBB ⇒ aaαABBB ⇒ aaaαBBB

⇒ aaabβBB ⇒ aaabbβB⇒ aaabbbβ ⇒ aaabbb. Notice that if you change
a capital A (a B) by a (by b) before receiving the signals, you won’t get a correct
string made only of terminal symbols. In fact, the rules A → a and B → b

are not needed any longer and will be removed in the final set of rules of the
grammar.

2. Check that, if we try to apply these rules to the second case (SAABABB),
where the structure is wrong, the signals make it impossible to generate a string
made only of terminal symbols. Let us look at one initially promising derivation,
later ruined because not all the non-terminals can be transformed into terminals:
SAABABB ⇒ αAABABB ⇒ aαABABB ⇒ aaαBABB ⇒ aabβABB

⇒ . . .

In the previous rules, two signals have been used: α, to tell the non-terminal symbol
A at its right that it can safely derive its terminal counterpart a, for it is located in
the initial block of As (without a previous B), and to the non-terminal symbol B

that this is the first B after the initial block of As. β is a signal that tells the non-
terminal symbol B at its right that it can safely derive its terminal counterpart b, for
it is located inside the block of Bs that follows the only allowed block of As.

The complete Chomsky type-0 grammar for this language consists of the
following derivation rules:

{S → λ, S → SAB,AB → BA, S → α, αA → aα, αB → bβ, βB →
bβ, β → λ}.



208 M. de la Cruz Echeandía et al.

This toy example has demonstrated the two most powerful techniques to program
Chomsky type-0 grammars to solve specific problems: moving parts of the derived
strings using the context, and synchronizing processes by means of signals.

2.3 Christiansen Grammars

2.3.1 A Short Historical and Academic Introduction

The last grammatical model that we will introduce in this chapter are Christiansen
grammars (CGs). They were first introduced by Henning Christiansen in [8] as a
model related to the Generative Grammars, introduced by Shutt in [30] in 1985.
These grammars are an extension of attribute grammars that includes them as a
special case. Therefore they also are computationally complete,the same as attribute
grammars. From a taxonomic viewpoint, CGs are an adaptable version of attribute
grammars. Adaptability is usually understood as the ability to change and adjust to
new conditions. For computational formal models, adaptability is the capacity of
the model to modify itself while it is being used. No grammar we have mentioned
so far is adaptable, for once defined they never change.

Christiansen first proposed his grammars as a practical Prolog data structure.
Prolog is a logic programming language, i.e. it implements the logic programming
paradigm, an automatic deduction system based on the Robinson’s resolution
inference system. Prolog has the following useful characteristics:

1. Prolog programs are first order logic theories written in a normal form called
clauses. The specific structure of these theories and the characteristics of these
clauses are out of the scope of this chapter.

2. First order logic can be considered a formal way to describe the knowledge
about a domain using the following mechanisms:

(a) Relevant individuals can be represented by means of so called terms that in
Prolog notation can be divided into the following groups:
(i) Constants, as 0, 34, john.

(ii) Variables, whose value can be any other term,as X, Y or even unnamed
(_).

(iii) Individuals described by means of functions that refers to other
individuals. For instance, f ather(john), arm(mary), double(X).

(b) Relationships between individuals can also be formalized by means of so
called predicates, which are defined in a recursive (inductive) way:
(i) First, basic true facts are included. They are called atomic predicates or

atoms). For example, natural(0) (asserts that 0 is a natural number);
f ather(john,mary), mother(ann,mary) (they assert that John is
Mary’s father and Ann is Mary’s mother).

(ii) Plus recursive or inductive rules, defining logical conditions that must
hold to deduce that something is true, as in the following examples:
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• parent (X, Y ) : −f ather(X, Y ); parent (X, Y ) : −mother(X, Y );
these two rules define X as the parent of Y if X is the father of Y

or the mother of Y .
• natural(successor(X)) : −natural(X). This rule, together with

the atom natural(0), declares that the predicate natural is true for
any natural number, i.e. 0, successor(0), successor(successor(0)),
and so on.

3. As in any inference system, one declares a priori knowledge about the domain
under consideration by means or an initial theory (a Prolog program), and
there are built in inference rules (resolution and unification) that make it
possible to infer (or deduce) new knowledge from previous knowledge, which
is then incorporated to the current theory, becoming undistinguishable from the
original theory.

In Prolog there is no distinction between data structures and executable code.
Prolog programmers working on formal languages use a special data structure called
Definite Clause Grammar (DCG), the Prolog way of defining attribute grammars.
This notation is slightly different to that of clauses, to highlight the similarity
with formal grammars. The following example makes clear these similarities with
clauses and grammars. It defines a grammar for a small kind of English sen-
tences taken from http://www.cs.uni-potsdam.de/wv/lehre/Material/Prolog/Eclipse-
Doc/userman/node68.html.

sentence --> noun_phrase(Number), verb_phrase(Number).

noun_phrase(Number) --> determiner, noun(Number).
noun_phrase(Number) --> pronom(Number).

verb_phrase(Number) --> verb(Number).
verb_phrase(Number) --> verb(Number), noun_phrase(_).

determiner --> [the].

noun(singular) --> [man].
noun(singular) --> [apple].
noun(plural) --> [men].
noun(plural) --> [apples].

verb(singular) --> [eats].
verb(singular) --> [sings].
verb(plural) --> [eat].
verb(plural) --> [sing].
pronom(plural) --> [you]

http://www.cs.uni-potsdam.de/wv/lehre/Material/Prolog/Eclipse-Doc/userman/node68.html
http://www.cs.uni-potsdam.de/wv/lehre/Material/Prolog/Eclipse-Doc/userman/node68.html
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This grammar can generate, among others, the following sentences, written
as Prolog lists: [the,man, eats, the, apple], [the,men, eat], [the,men, eats],
[eat, the, apples].

After this brief outline from first order logic to Prolog DCGs we can highlight
the following conclusions:

• The Prolog clause structure is quite similar to derivation rules for context-free
grammars.

• Prolog features to attach variables to predicate names provide a natural and
native way to add semantic information to a symbol of a grammar. The Prolog
inference rules (resolution and unification, specially unification) include the
propagation mechanisms of attribute grammars when the grammar is expressed
as DCGs.

Starting from this context, it is easy to understand the question posed by H.
Christiansen, to be solved by CGs: how can attribute grammars take advantage of
the fact that Prolog can modify the initial program with new proven facts?

This is a good point to describe briefly the mechanisms by means of which Prolog
programs can self -change while they are running. To write a Prolog program, you
open your preferred text editor and write your predicates exactly in the same way
as in most programming languages. But there are a couple of families of built in
predicates that make it possible to change your theory by adding and removing
clauses when they are executed:

1. The assert (Clause) adds a new clause (Clause) to the theory, which the Pro-
log inference rule will be able to use in the future, together with the remainder
of the program. (In the following simplified examples, you can get compilation
errors if you write this in a Prolog environment). Assume your program contains
this clause instead of the one mentioned before: natural(successor(X)) :
−natural(X), assert (natural(successor(X))). If the system executes this
for X = sucessor(0), your theory will now have an explicit atom declaring
natural(sucessor(sucessor(0))).

2. There is also a family of predicates (namely retract) that does the
opposite. If your program, for example, after explicitly asserting several
natural numbers (such as successor(0) , successor(successor(0)) and
successor(successor(successor(0))) retracts the recursive clause for the
predicate natural the system will only consider correct natural numbers the first
four: 0, 1, 2 and 3.

It is easy, then, to understand how a Prolog version of the attribute grammars
can easily become adaptable. If assert or retract clauses are added in your DCG
derivation rules can be added or removed. This is the technique used by Christiansen
to define his CGs.
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2.3.2 Partial Formalization for CG

Informally CGs extend attribute grammars with the following two mechanisms
(although the second one is actually a consequence of the first):

• Rather than considering just one global set of derivation rules, each non terminal
symbol is provided with a local copy of the rules that can be used to generate
derivations from that symbol.

• This is implemented by providing each symbol in the grammar with an inherited
first attribute containing its CG. Additional attributes can also contain CGs that
will be used to change and propagate the grammar to other symbols, while
deriving strings.

Thus the same notation will be used for CGs as was used for attribute grammars.
As an example, we will handle by means of Christiansen grammars the same kind
of constraints as in the attribute grammar that used a symbol table. Figure 6 shows
a similar grammar for a similar language. It has been slightly changed, so that the
figure is the proper size. This figure shows the complete grammar. Let us describe
its main characteristics and differences with the previous one:

• The context-free kernel considers as the only valid identifier names strings with
just one letter.

• Valid sentences are reduced to assignments among variables (this is just a toy
language, complex enough to show the use of CG).

• The non-terminal that refers to the name of the variables while they are being
declared is called string, because it represents a string of symbols.

• The non-terminal that refers to the name of the variables when they are used in
sentences is identif ier .

• There are no rules to derive from the non-terminal symbol identif ier . This
is important, for a context-free grammar with this set of derivation rules is
incomplete, as it contains non-terminal symbols unable to generate terminal
symbols.

In addition to the set of derivation rules and the derivation tree for the string
{int i, j ; i = j ; }. Figure 6 graphically shows the propagation process, distinguish-
ing between synthesis (red arrows) and inheritance (blue ones). It also adds, as extra
information, a numeric sequence that follows a possible order in which semantic
actions, and hence propagation occurs. Let us analyze the example in detail:

• The first relevant topic is that CGs allow incomplete sets of derivation rules, as
they are supposed to be completed while deriving strings. In our example, rules
for identif ier should be added to the current grammar before the non-terminal
is derived in the right subtree of Fig. 6.

• The propagation process graphically highlighted focus on the way in which the
current grammar for each symbol is computed.

• We will explain the sequence of this process because the order followed is the
most powerful one, which makes it possible to build the derivation tree at the
same time than both kind of attributes (synthesized and inherited) are computed.
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This order is known as in depth, left-most with backtracking, because it goes
deeper and deeper through the left-most sons until finding a leaf. At this point,
it backtracks to the deepest next option to the right. This order corresponds with
the sequence of numbers added to the tree:

1 Initially, the axiom passes to its first left child (declarations), as its
current set of derivation rules, those shown in the figure.

2,3 In these steps the process is the same: the subsequent parents
(declarations, declaration and string) just pass the initial grammar
to their children.

4 After reaching the leaf containing the terminal symbol i, we know a
possible right hand side for the non-terminal identif ier , so the rule
identif ier → i is added to the initial set of rules, and a second CG
attribute (this time synthesized) is computed.

5,6 The synthesized grammar is sent back, up to node declaration,
previously visited in step 2.

7 At this point, the grammar is inherited by the right sibling
declarations, with all the names of the different variables declared
up to this point accumulated in the grammar.

8,. . . ,15 A similar propagation is followed to add the rule identif ier → j to
the grammar, which is finally inherited by the right sibling sentences.

16, etc. From this point, no additional changes are made to the current
grammar, which is now complete and hence will be inherited from
parent to children.

2.3.3 Conclusions

It is time to try to extract some useful conclusions of these examples. The first one
is specific to the last example: adaptability could simplify the attribute system. In
this way, the use of a global symbol table could be avoided by using two different
non-terminal symbols (string and identif ier) for the names of variables being
declared and used, respectively; leaving initially undefined the rules for identif ier ,
and adding them during the propagation of the current grammar. But we must keep
in mind that adaptability does not add expressive power to CGs, for they just extend
the attribute grammars and these grammars are the most expressive. So we must
conclude again that choosing between these two types of grammars (or, as in our
example, using or not a symbol table) is a question of taste for the developers;
thence, again, a comfort question.
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2.4 AGE and CGE

2.4.1 How We Extend GE

We extend GE using both attribute grammars or Christiansen grammars, explicitly
building the derivation tree while attributes are propagated across the tree with the
in depth, left-most with backtracking order. In this way we can ensure the semantic
correctness of phenotypes and include in the grammar as many semantic constraints
as we consider appropriate for all our candidate solutions. As previously discussed,
the choice between attribute grammars and Christiansen grammars is a comfort
question for the designer of the experiment.

2.4.2 Previous Works

We first proposed AGE in [13]. In this paper we tested the viability of this approach
by replicating previously published GE experiments to solve the symbolic regression
problem: how to get a symbolic expression for points sampled among the values of
f (x) = x4 + x3 + x2 + x when x ∈ [−1, 1]. In this work we performed different
experiments from which we have drawn the following conclusions:

• GE and AGE show a similar performance to get similar results in terms of
number of fitness functions evaluated. In our first experiment we discarded,
by means of the attribute system, candidate solutions undefined in some of the
input points. This condition is in some ad hoc way also checked using GE, by
means of the fitness function, which gave rise to a significant increase in the
time needed by the mapping function.

• We performed a second experiment to compare GE and AGE performance when
a very simple constraint was added to all the candidate solutions: that all the
phenotypes should match the goal at least in one of the three input points −1, 0
of 1. In this case, there was a clear improvement in the performance of AGE.

We proposed CGE in a later paper, [27], where we posed for the first time that the
choice between AGE and CGE is rather a comfort than a performance question. We
made an exhaustive comparison between GE and CGE in the logical regression
domain. This is a special case of symbolic regression, where the goal function
is boolean. We started by a clearly context-free language and then added a few
conditions not as easy to implement by context-free rules, such as forcing the use
of logical operators from the same complete set: either {and, or, not}, or {nand} or
{nor}. We got the following conclusions:

• CGE is too sophisticated for simple problems: GE performance is better that
CGE for the simplest cases.

• CGE could be a more comfortable way for the designer to express some
restrictions: in our CG, we just removed those operators incompatible with the
first generated one, for example, if nand is the first generated operator, from that
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point the other operands are removed as valid right hand sides for the derivation
rules that generate operands.

In further papers [12, 14] we have explored different questions related with the
performance and the possibility of using AGE and CGE as a kind of software
engineering tool when trying to solve real problems by programming new bio-
inspired models of computation.

3 Most Relevant Conclusions

3.1 In General

We have tried to introduce in a comprehensible way every question necessary to
understand not just the context, but also the type of tasks related with the solution
of problems by means of AGE and CGE. We can highlight the following general
conclusions:

• Roughly speaking, semantics seems to be everything that we cannot express
by means of context-free grammars. Formally speaking, everything is syntax.
Although something similar could be said about semantics. . . everything can
be expressed as semantics.

• Type-0 grammars should only be used if the implementor is comfortable
designing signals to synchronize processes, and expressing global behaviours
in terms of local interactions.

• Attribute grammars should be used when the implementor is more comfortable
graphically describing global behaviours (such as propagation on derivations
trees represented by means of arrows) and writing algorithms, rather than
developing inductive algebraic proofs.

• Context-free grammars should be used to represent strings whose structure
can be split into independent parts, each part exhibiting a pattern that grows
simultaneously at both ends, or of similar complexity.

• A subtle magnitude that can be called comfort could be the key to choose
between all these different models. Comfort could be more relevant for making
these decisions than the theoretical expressive power of the model under
consideration.

3.2 AGE and CGE

There is a significant difference between GE and our semantic approaches (AGE
and CGE). The designer must decide between two alternatives: expressing some
conditions of the solutions to the problem either in the fitness function, or in
the attribute system of the grammar. In the first case, individuals violating those
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conditions will sometimes be generated and must be punished by the fitness
function, while in the second case those bad individuals will never be generated.
This could be considered as a new parameter to be tuned: the amount of semantics
explicitly expressed.

We have concluded from our experiments that:

• The advantages provided by CGE and AGE can only be seen when tackling
difficult problems, meaning those with huge search spaces.

• Too much semantics does not necessarily imply better results. We have pre-
viously explained in this chapter that both attribute grammars and CGs are
computationally complete models. This means that the solutions can be com-
pletely described by means of semantic constraints. It is clear that, in this case,
all the population generated would consist of correct solutions to the problem,
therefore the evolutive side of the system would not be used at all in the search.
It would be just a random search.

• The more constraints the attribute system includes, the less diversity in the
population. But the fewer constraints in each individual, the less solutions will
be found by the evolutionary computation.

• Sometimes just a few semantics are enough, for the increase in performance
will be clear even with weak or trivial semantic conditions.
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Multi- and Many-Threaded
Heterogeneous Parallel Grammatical
Evolution

Amanda Sabatini Dufek, Douglas Adriano Augusto, Helio José Corrêa
Barbosa, and Pedro Leite da Silva Dias

Abstract There are some algorithms suited for inference of human-interpretable
models for classification and regression tasks in machine learning, but it is hard to
compete with Grammatical Evolution (GE) when it comes to powerfulness, model
expressiveness and ease of implementation. On the other hand, algorithms that
iteratively optimize a set of programs of arbitrary complexity—which is the case
of GE—may take an inconceivable amount of running time when tackling complex
problems. Fortunately, GE may scale to such problems by carefully harnessing
the parallel processing of modern heterogeneous systems, taking advantage of
traditional multi-core processors and many-core accelerators to speed up the
execution by orders of magnitude. This chapter covers the subject of parallel GE,
focusing on heterogeneous multi- and many-threaded decomposition in order to
achieve a fully parallel implementation, where both the breeding and evaluation
are parallelized. In the studied benchmarks, the overall parallel implementation
runtime was 68 times faster than the sequential version, with the program evaluation
kernel alone hitting an acceleration of 350 times. Details on how to efficiently
accomplish that are given in the context of two well-established open standards for
parallel computing: OpenMP and OpenCL. Decomposition strategies, optimization
techniques and parallel benchmarks followed by analyses are presented in the
chapter.
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1 Introduction

The field of machine learning has gained a lot of momentum recently and its
applications have become ubiquitous across many domains. Most these applications,
though, employ some variation of artificial neural network, for instance, Deep
Neural Network and Recurrent Neural Network [5, 6]. However, there are classes of
problems in machine learning that do not fit well black-box techniques, which is the
case of artificial neural network and its derivatives. For example, the important class
of knowledge extraction is in most cases better approached by means of symbolic-
based techniques, where the model is itself the representation of the knowledge.
Sophisticated symbolic-based methods allow for precisely defining the structure of
the models or, in other words, defining their language, which in turn establishes the
optimization’s search space. Grammatical evolution is a symbolic-based technique
that allows specifying the language of the models via formal grammars such
as context-free grammars. Not only this, but all that can be easily implemented
through a simple linear-based mechanism, which maps binary arrays into actual
program/models.

Genetic programming algorithms—which includes GE—are known for their
high computational demand, especially for population-based ones. This is partic-
ularly critical when dealing with complex large-scale regression problems which
contain at least one of: (1) high-dimensional datasets; (2) difficult landscapes,
which demands several number of generations; (3) complex and/or large number
of candidate solutions. Unfortunately, in real-world problems it is rare to not have
at least one of the listed characteristics. Indeed, frequently several of them will be
simultaneously present for real-world problems.

Here is where parallelism takes place. GE, like evolutionary algorithms in
general, is embarrassingly parallel, which means it can be decomposed efficiently
thereby enabling it to scale to complex problems. In shared-memory systems, the
more usual and straightforward strategy to parallelize GE is by decomposing the
population and performing the breeding and evaluation tasks on multiple individuals
simultaneously. However, it is well known that the evaluation procedure, which boils
down to iterated program interpretation/execution over a dataset, accounts for the
majority of computational time, due mainly to complex candidate solutions and/or
high-dimensional datasets. Fortunately, as the evaluation phase is pretty regular
in terms of instructions and memory access, it is possible to efficiently harness
the computing power of general purpose accelerators to speed up even further this
phase.

That is where heterogeneous computing fits in. Virtually all computational
systems nowadays come with different processors where each one is more efficient
at a certain workload. For instance, a typical modern system contains a conventional
CPU, which deals well with irregular workloads (multiple divergent instructions,
random memory accesses), and one or more accelerators, which are optimized for
high computational intensity and regular workloads (single instruction, coalesced
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memory accesses). CPU designs consist of multiple high-frequency and complex
processor cores that efficiently access data through the intensive use of large cache
memories. As opposed to CPU’s latency-oriented design, accelerators are character-
ized by a large number of relatively simple cores and a high-bandwidth memory in
order to maximize throughput at the expense of increasing latency, with a low-power
consumption. Of course, the most efficient way of utilizing a processor is assigning
to it the workload for which the architecture was optimized for. This chapter will
present an efficient heterogeneous scheme to fully parallelize the GE algorithm,
taking advantage of both CPUs and accelerators, and is organized as follows: Sect. 2
shows how the breeding phase of GE can be decomposed into multiple threads in
a coarse-grained fashion. In Sect. 3, the evaluation phase is addressed and some
strategies are detailed on how this phase can be properly parallelized through
fine-grained decomposition. Performance analyses are presented in Sect. 4, where
several experiments followed by discussions are conducted on two benchmark
setups.

2 Multi-Threaded Parallel GE

Massively parallel many-core accelerators have become increasingly popular in
high-performance computing, mainly because of their huge theoretical raw per-
formance, which actually brings impressive speed-ups to many algorithms across
domains. They are not a panacea, though. Every processor architecture has com-
promises, usually meaning being either extremely efficient at a certain workload
pattern or designed towards a more balanced efficiency over different workloads—
it all boils down to what the transistors on a chip are devoted to, either to
actual processing (ALU) or to some higher-level purpose such as multi-level
cache hierarchy, speculative and out-of-order execution [13]. GPUs are more
like specialized processors—thus very efficient but sensitive to the processing
pattern—whereas conventional CPUs are more general—that is, do not excel at
specific tasks but are robust and provide satisfactory performance regardless of the
workload.

Algorithm 1 outlines the pseudo-code of a basic GE algorithm. The initialization
of the population of binary genomes (generate), the decoding of genomes into
phenotypes/programs (decode) and the derivation of new individuals from fit ones
(derive) are here collectively referred to as breeding. The fitness evaluation of the
programs is computed by evaluate, whose parallel decomposition is presented
in Sect. 3. We use the term evolutionary tasks to refer to breeding and evaluation-
related tasks all together.

Technically speaking, there is nothing that prevents the parallelization of the
GE’s breeding phase on accelerators, as proposed for instance in [14] and [16].
However, there are compelling arguments why multi-core CPUs are well suited
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Algorithm 1: Basic GE algorithm

P ←generate (); // initialize population of genomes P with random bits

P
′ ←decode (P ); // decode binary genomes in P according to a grammar

evaluate (P
′
); // transfer P

′
to accelerator, evaluate and calculate best

while stop criteria not met do
Ptmp ←derive (P ); // select, crossover and mutate from P into Ptmp

P
′ ←decode (Ptmp);

evaluate (P
′
);

P � Ptmp; // swap Ptmp with P (no actual copy is needed)

return the best program found

for the task: (1) CPUs are designed to be smarter and predicable on irregular
workloads which typically show up when generating random numbers, traversing
the grammar during the decoding, and deriving new individuals; (2) heterogeneous
computing aims at efficiently adding together the power of multiple processors,
that is, harnessing all of them properly while minimizing their idleness; (3) finally,
low-level programming models for accelerators lead to considerable more code
complexity, especially when compared with directive-based models on CPUs.

With that being said, we will show how a very simple yet efficient directive-
based OpenMP [4] parallelism is introduced to the breeding phase. OpenMP is an
open directive-based specification designed for thread-based parallelism models to
be executed on shared memory multiprocessors, with guaranteed portability across
architectures from multiple vendors. The most prominent feature of directive-based
parallel programming models is how little code has to be introduced in order to
parallelize a routine. As seen in Algorithms 2, 3 and 4, only a simple pragma
directive per routine was necessary.

Algorithm 2: [generate]
#pragma omp parallel for
for p ← 0 to populationsize − 1 do

for i ← 0 to genomesize − 1 do
genomei

p ← RandomBit();

Algorithm 3: [decode]
#pragma omp parallel for
for p ← 0 to populationsize − 1 do

programp ← decode(genomep);
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Algorithm 4: [derive]
#pragma omp parallel for
for p ← 0 to populationsize − 1 do

Select from P two fit programs, g1 and g2;
if [probabilistically] crossover then

Recombine g1 and g2 into Ptmp;

else Clone g1 and g2 into Ptmp;
if [probabilistically] mutation then

Mutate the recently inserted programs in Ptmp;

p ← p + 2;

The directive parallel for instructs OpenMP to parallelize the loop that fol-
lows it, effectively distributing the effort among threads. As usually the population
size surpasses the number of available CPU threads (cores), what will happen at
runtime is that each thread will process roughly populationsize

|threads| genomes sequentially,
where by the default OpenMP scheduling means chunks of adjacent genomes.

2.1 Startup Tasks

Although not mentioned in Algorithm 1, before the actual evolution there are
some startup tasks that take place. In particular, two are related to this multi-
threaded decomposition: the pseudo random number generation (rng init) and
the memory allocate for the main and temporary populations (evolution init).
They are small and quick tasks, but implementing them incorrectly may cause
performance degradation to the whole evolutionary phase.

What rng init does is basically allocating storage for the seed of each instance
of a pseudo random number generator—in multi-threaded applications there is an
RNG instance for each thread with its own seed in order to not interfere with
the other instances. Analogously, evolution init performs the allocation of
genome arrays.

There are two important optimizations to care about: (1) minimizing the data
path length between a CPU thread and the memory region that it accesses; and (2)
preventing that multiple CPU threads invalidate the cached data of one another.

The first issue occurs on computers that feature Non-Uniform Memory Access
(NUMA) memory topology, typically found in modern high-performance systems,
and is handled by following the so-called first touch policy [12]. What it says is
that upon the first memory allocation the processor tries to allocate the space on the
nearest memory to the thread that issued the allocation. Therefore, if only one thread
performs the whole allocation—be it genomes or seeds—all that region would be
closest to that single thread, implying that other threads would probably have to
struggle over a longer data path to access this region afterwards. Fortunately, the
solution is as simple as decomposing the population into individual genomes (seeds)
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and making sure that every thread allocates its own range of genomes (or seeds). In
order to allow for deterministic reproducibility and ensure different seeds across
RNGs, each RNG instance will have its seed expressed by seedglobal � threadid ,
where � is the bitwise exclusive or binary operator.

The second issue affects nearly all multi-core machines because of their cache-
based memory architecture, and is known as false sharing [3]. This occurs when two
or more threads access distinct memory locations in the same cache line.1 When a
thread writes to a cache line required by another thread for reading or writing, it
invalidates the cache line and forces an update—which results in access to the much
slower main memory—leading to performance degradation. Thankfully, a positive
side effect of the data decomposition introduced to tackle the first issue is that it also
distributes the data on the memory thereby minimizing the likelihood of multiple
threads operating on the same cache line.

3 Many-Threaded Parallel GE

While multi-core CPUs are well-suited for the type of workload involved in the
breeding phase, most of the architectural design that make CPUs so robust are
useless for the well-behaved processing pattern of program evaluation, resulting in
a low performance per transistors count ratio. This is especially true for strategies
that optimize workload regularity, in which accelerators genuinely shine.

Three well-known strategies were examined for the parallel implementation
of the evaluation process; they are: Program-level Parallelism (PP), Data-level
Parallelism (DP) and Program- and Data-level Parallelism (PDP) [2, 15]. The
first strategy explores the iteration-level parallelism; the second one addresses
the solution-level parallelism; and the last one is the most complete strategy
as it explores both iteration- and solution-level parallel models. The evaluation
phase of GE is parallelized via the OpenCL programming language [11], an open
standard managed by the Khronos Group for the development of portable parallel
applications on heterogeneous computing systems. An advantage of OpenCL is
that it supports a wide range of parallel devices from multiple vendors as well as
many different hardware platforms. Sections 3.1–3.3 describe the three evaluation
kernels. The OpenCL kernel designed to compute the best program at each iteration
is presented in Sect. 3.4.

1Put simply, cache is a very fast but small memory that stores the most recently/commonly accessed
data. When a requested data is not in cache, a fixed size block of data—which contains not only
the requested data, but also the nearby ones—is copied from main memory into the cache, which
is known as cache line or cache block [10].
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3.1 Program-Level Parallelism: PP

A general scheme of OpenCL kernel for the Program-level Parallelism (PP) strategy
in pseudo-code is outlined in Algorithm 5. The iteration-level parallel model is
achieved by distributing the programs among the processing elements of a compute
device. For this strategy, the programs are partitioned into work-groups of size
localsize, where localsize represents the number of work-items in a work-group.
A work-item—globally identified by globalid—corresponds to a single program,
and globalsize denotes the total number of work-items, which in this case is the
population size. The localsize and the globalsize were defined as follows:

localsize = min(localmax_size, #populationsize/cu$), (1)

globalsize = #populationsize/ localsize$ × localsize, (2)

ensuring that globalsize is divisible by localsize, as required by the OpenCL
specification, such that numbergroups = globalsize

localsize
= #populationsize/ localsize$.

Equation 1 ensures that the maximum number of work-items per work-group,
localmax_size, is not exceeded, and also that the distribution of the programs
among the cu compute units is balanced even though the population size,
populationsize, is smaller than the total number of device’s processing elements. In
Eq. 2, if populationsize/ localsize is not evenly divisible, the rounding up implies
globalsize > populationsize. Thus, the checking at the line 2 in Algorithm 5 is
required to avoid accessing invalid elements.

Algorithm 5: PP OpenCL kernel—[evaluate]
globalid ← get_global_id();

22 if globalid < populationsize then
program ← nthprogram(globalid );

P ← 0.0;
55 for n ← 0 to datasetsize − 1 do
66 P ← P + error(interpreter(program, n), Y [n]);

E[globalid ] ← P/datasetsize;

For each register n of the dataset, the error() function returns an accuracy
measure for the problem in question, according to the fitness function predefined
by the user. Error() requires two arguments: the expected value Y [n] and the
one returned by interpreter() (line 6), a function that executes program on
the n-th register of the dataset. Note that a single work-item within a work-group
computes the sum of partial errors of program over the datasetsize registers of the
dataset, and stores it into variable P , allocated in the work-item’s private memory.
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At the end of f or loop (line 5), the error of the program indexed by globalid is
stored into array E of size populationsize, allocated in the device’s global memory.

3.2 Data-Level Parallelism: DP

Algorithm 6 shows a pseudo-code of the Data-level Parallelism (DP) strategy. The
solution-level parallel model is achieved by partitioning the whole dataset among
the processing elements of a compute device. For this strategy, the registers of
the dataset are partitioned into work-groups of size localsize, while the programs
are evaluated sequentially, i.e. only one program is evaluated at a time. A work-
item—globally identified by globalid—is a register of the dataset, and globalsize is
equivalent to the dataset size. By following the same reasoning as in the PP strategy,
the localsize and the globalsize were defined as follows:

localsize = min(localmax_size, #datasetsize/cu$), (3)

globalsize = #datasetsize/ localsize$ × localsize, (4)

such that numbergroups = #datasetsize/ localsize$.

Algorithm 6: DP OpenCL kernel—[evaluate]
localid ← get_local_id();
globalid ← get_global_id();
groupid ← get_group_id();

44 for p ← 0 to populationsize − 1 do
55 barrier();

P [localid ] ← 0.0;
77 if globalid < datasetsize then

program ← nthprogram(p);
99 P [localid ] ← error(interpreter(program, globalid ), Y [globalid ]);

1010 s ← 2#log2(localsize)$/2;
1111 while s > 0 do
1212 barrier();
1313 if localid < s and localid + s < localsize then

P [localid ] ← P [localid ] + P [localid + s];
1515 s ← s/2;

if localid = 0 then
E[p × numbergroups + groupid ] ← P [0];

For each program indexed by p, localsize registers of the dataset are simultane-
ously evaluated by each work-group, indexed by groupid . For a given globalid
register, error takes the expected value Y [globalid ] and the one returned by
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interpreter(), and calculates an accuracy measure (line 9). Thus, each work-
group measures the accuracy of program over localsize registers of the dataset, and
stores the values returned by error() into array P of size localsize, allocated in
the work-group’s local memory.

The parallel reduction procedure [7] for sum operation takes place between the
lines 11 and 15, in which the partial errors of the localsize work-items are added
up. At the end of parallel sum, the first element of P contains the sum of localsize
errors of program from groupid . It is stored into array E of size numbergroups ×
populationsize, allocated in the device’s global memory. Barrier(), at line 12,
consists of a synchronization barrier for work-items within the same group. It
guarantees the consistency of the local memory since P [localid + s] refers to a
memory region modified by a neighbor of the current localid work-item. For the
correct use of the parallel reduction, localsize should be a power of 2. If localsize
is not a power of 2, the rounding to the next power of 2 in s calculation (line 10)
implies localid + s > localsize for some (localid , s) tuples. Thus, the checking at
the line 13 is required to avoid accessing invalid elements. Finally, the numbergroups

partial errors from each program indexed by p, stored in array E, are added up on
the host processor, thus providing the fitness of the program.2 Upon entering the
next iteration, the barrier() function (line 5) will ensure that all work-items of
the just ended iteration have finished their processing.

3.3 Program- and Data-Level Parallelism: PDP

A general pseudo-code of OpenCL kernel for the Program- and Data-level Paral-
lelism (PDP) strategy is outlined in Algorithm 7. For this strategy, each work-group
is responsible for evaluating one program, indexed by groupid , whose work-
items—locally identified by localid—collectively take care of all registers of the
dataset. The localsize and globalsize were calculated as follows:

localsize =
{

datasetsize if datasetsize < localmax_size

localmax_size otherwise
(5)

globalsize = populationsize × localsize, (6)

ensuring that globalsize is divisible by localsize. According to Eq. 5, localsize can
be less than datasetsize. In this case, a given localid may cover multiple registers of
the dataset through an iterative procedure (line 5), whose stopping criterion is given
by #datasetsize/ localsize$.

2Due to accelerator device constraints, the OpenCL programming model forbids synchronization
among work-groups which precludes gathering the partial errors within the evaluation kernel. Since
only a fraction of partial errors remains at the end of the kernel execution, it is preferred to reduce
them directly on the host processor (CPU).
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Algorithm 7: PDP OpenCL kernel—[evaluate]
localid ← get_local_id();
groupid ← get_group_id();
program ← nthprogram(groupid );

P [localid ] ← 0.0;
55 for i ← 0 to #datasetsize/ localsize$ − 1 do

n ← i × localsize + localid ;
77 if n < datasetsize then
88 P [localid ] ← P [localid ] + error(interpreter(program, n), Y [n]);

99 s ← 2#log2(localsize)$/2;
1010 while s > 0 do
1111 barrier();
1212 if localid < s and localid + s < localsize then

P [localid ] ← P [localid ] + P [localid + s];
1414 s ← s/2;

if localid = 0 then
E[groupid ] ← P [0]/datasetsize;

At each iteration i of f or loop (line 5), localsize registers—identified by
the variable n—are simultaneously evaluated by each work-group. The line 7
guarantees access to only the valid elements. For a given n register, error() takes
the expected value Y [n] and the one returned by interpreter(), and calculates
an accuracy measure (line 8). Thus, each work-group measures the error of a single
program over the datasetsize registers of the dataset, and stores the values returned
by error() into array P of size localsize, allocated in the work-group’s local
memory.

The parallel reduction procedure takes place between the lines 10 and 14, in
which the partial errors of the localsize work-items are added up. At the end of
parallel sum, the first element of P contains the sum of the datasetsize errors of
the program indexed by groupid . It is stored in array E of size populationsize,
allocated in the global memory of the device.

3.4 Iteration’s Best Program

A pseudo-code of OpenCL kernel developed to find the best program at each
iteration is outlined in Algorithm 8. The localsize and the globalsize are the same
as defined in the PP strategy (see Sect. 3.1).

Let E be an array of size populationsize, allocated in the device’s global
memory, where E[globalid ] represents the error of program globalid . The errors
are partitioned into work-group of size localsize and stored into array PB of
size localsize, allocated in the work-group’s local memory (line 4). Note that the
positions associated with the errors in the array E are stored into array PI for a
future identification of the best program.
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Algorithm 8: Iteration’s best program—[best]
localid ← get_local_id();
globalid ← get_global_id();

33 if globalid < populationsize then
44 PB[localid ] ← E[globalid ];

PI [localid ] ← globalid ;

66 s ← 2#log2(localsize)$/2;
77 while s > 0 do
88 barrier();
99 if localid < s and localid + s < localsize then

1010 if PB[localid ] > PB[localid + s] then
PB[localid ] ← PB[localid + s];
PI [localid ] ← PI [localid + s];

1313 s ← s/2;

if localid = 0 then
B[groupid ] ← PB[0];
I [groupid ] ← PI [0];

The parallel reduction procedure for minimum operation takes place between
the lines 6 and 13. At each iteration of while loop (line 7), localsize work-items
are simultaneously executed by each work-group. However, only the work-items
identified by localid = 0, . . . , min

(
localsize − s, s

)
execute the line 10 which

compares the errors of the programs indexed by localid and localid+s, and store the
best one in the localid -th position of the array PB. At the end of parallel comparison,
the first element of PB contains the smallest value from the localsize errors of
groupid . It is stored into array B of size numbergroups , allocated in the device’s
global memory. The first element of PI contains the position associated with the
best program in the array E. Finally, the host processor finds the n minor values
from the numbergroups errors retained in the array B, which will be used by the
next iteration.

4 Performance Analysis

In this section we first present a case study to analyze the individual impact of
each parallel optimization on GE performance as well as its dependence on parallel
strategy and architecture. The set of experiments discussed in Sect. 4.1.1 take into
account only the OpenMP evolutionary tasks, while the ones reported in Sect. 4.1.2
consider only the OpenCL kernels. Both OpenMP and OpenCL evolutionary tasks
are added together to the GE algorithm in Sect. 4.1.3.

Thereafter, a controlled experiment is conducted in Sect. 4.2 to provide an
in-depth performance analysis of the three evaluation kernels as a function of
population and dataset size.
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Computational Environment All the experiments were conducted on (1) a 4-core
Intel i7-2600k CPU with Hyper-Threading enabled (4 physical + 4 logical cores
= 8 threads), featuring 4 compute units (CU), 8 processing elements (PE) per CU,
maximum local size of 4096 and 32GB of global memory; (2) an NVIDIA Geforce
GTX-580 GPU accelerator with 16 CUs, 32 PEs per CU, maximum local size
of 1024 and 3GB of global memory. The host was running Ubuntu 16.04 64-bit
GNU/Linux, GNU Compiler Collection version 5.4, and two OpenCL platforms:
pocl 0.14, providing support for the CPU [9], and NVIDIA 367.57 for the GPU.

The heterogeneous parallel GE implementation used is dubbed Parallel Program
Induction (ppi),3 a Free Software written in C/C++, OpenMP and OpenCL.

Data Layout Depending on how the input dataset is arranged in the memory, either
a coalesced or strided memory access pattern take effect during the concurrent
execution of the interpreter [17]. Coalesced means that while a work-item accesses
an array position, its neighbors are accessing adjacent positions, resulting in a
contiguous memory region being accessed at a given time; for strided, there is
always a gap between the access positions of two adjacent work-items, typically
meaning that each work-item processes a chunk of adjacent elements, one at a
time. In general, cache-based architectures such as CPUs prefer the non-coalesced
strided access to avoid cache interference because when an array element is accessed
from global memory, the processor automatically caches many other elements in
advance for the work-item that requested the data. On the other hand, GPUs take
advantage of many work-items accessing a neighbor memory region by combining
various independent data requests into a single memory transaction. In the context
of the evaluation kernels discussed in Sect. 3, transposing the dataset—each variable
column becomes a row in memory—leads to coalescence whereas the natural
arrangement leads to the strided pattern. That being so, transposition was applied
when executing the kernels on GPU.

Maximum Local Size As stated in Eqs. 1, 3 and 5, the evaluation kernels calculate
their localsize based on the localmax_size provided by the compute device, which in
our case is 4096 for the CPU and 1024 for the GPU. However, using the maximum
value not necessarily leads to the optimal performance: too much work-items within
a single work-group may overload the hardware capacity whereas too few work-
items may underutilize it. This is why for every experiment configuration we first
calibrate the localmax_size parameter to maximize performance.

4.1 Case Study

Problem GE was applied to the symbolic regression problem given by 103 pairs
(xi, yi), where xi = 0.015i, i = 1, 2, . . . , 103, are fixed points and yi = f (xi) =

3ppi is freely available at http://github.com/daaugusto/ppi.

http://github.com/daaugusto/ppi
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min
{

2
xi

, sin(xi)+ 1
}

are the target function values at specific points xi . This

problem is the same as addressed by [1], except for the total number of pairs.

Parameters and Methodology Since we are interested in GE’s performance
analyses instead of actually finding a solution to a given problem, the GE’s
fixed parameters were set as follows: population of 103 programs, 2 generations,4

crossover rate of 90%, per-bit mutation rate of 0.5%, tournament size of 100
programs, genome size of 103 bits, gene size of 8 bits, and 16-bit ephemeral
constant precision. The fitness function was defined as the Mean Squared Error
(MSE) on the dataset. The number of OpenMP threads vary from 1 to 10, according
to the purpose of the experiment. Five hundred independent runs of each version
of the GE algorithm were performed. The performance analysis is conducted in
terms of median execution time over 500 runs as well as their median speedup5

and improvement percentage.6 It will be placed more emphasis on evolutionary
tasks which are the core of the algorithm, since the startup tasks run only once
at the beginning of the algorithm. The grammar defines a language of mathematical
expressions that contains sine, cosine, arithmetic operations, numerical constants
and the variable x.

4.1.1 Multi-Threaded + Sequential

This section focuses on the multi-threaded parallel GE, where the following
evolutionary tasks are executed on the multi-core CPU via OpenMP: generate,
decode and derive. The evaluate and best events are executed on the CPU
in a serial way.

Given that the experiments were run on a multi-core CPU processor, it is
expected that the parallel execution time of loop iterations regarding the OpenMP-
accelerated breeding phase—generate, decode and derive—decreases as the
number of threads increases, particularly up to four threads, as we can see in Fig. 1a.
Indeed, their speedup increases up to eight threads, with the highest values obtained
by generate, followed by derive, and decode with the worst performance, as
shown in Fig. 1b. For eight threads, the speedup was 6.1, 4.4 and 2.4, respectively.
One may speculate that decode’s scalability was probably impaired by its rather
irregular workload in terms of instructions and memory accesses which, although to
a much less extent, impacts CPUs too; fortunately, it is the lightest weight workload
among the three and thus does not contribute much to the overall time. The relative

4Note that a single generation would suffice to estimate the execution time of the tasks of the GE
algorithm, however, we used two generations in order to make the timeline visualization more
appealing.
5Speedup is the ratio between the execution time of the algorithm before and after improvement.
6Improvement percentage is the difference between the execution time of the algorithm before and
after improvement over the execution time of the unimproved version, and multiplying by 100.



232 A. S. Dufek et al.

a b

c

Fig. 1 (a) Median execution time and (b) median speedup corresponding to the three OpenMP
evolutionary tasks—generate, decode and derive—as a function of the number of threads.
(c) Improvement percentage that compares the median execution time of the sequential GE (thread
equal to one) with that obtained by the multi-threaded parallel GE using two or more threads. The
startup tasks were not taken into account for calculating the execution time of the algorithm

decline in speedup of the three OpenMP evolutionary tasks with five threads can be
seen as a persistent anomalous behavior (see Fig. 1b). On the other hand, the relative
worsening in parallel performance when using more OpenMP threads than the
number of available CPU threads is attributed to a classic multi-threaded problem
known as oversubscription [8], in which the OpenMP threads compete for resources.

The generate event takes roughly 6–9 times more time to run in parallel mode
than the other two events together—derive and decode. On the other hand, the
generate runtime is negligible when compared to the evaluate runtime, about
28 times slower than the former. By consequence, the improvement percentage in
the execution time of the multi-threaded parallel GE with respect to that obtained by
the sequential GE is very small (see Fig. 1c). For instance, the reduction from 0.70 s
with one thread to 0.65 s with eight threads represents an improvement of 0.05 s in
0.70, or a reduction of just 7% in total execution time of the evolutionary tasks.
The anomalous worsening in runtime with three and six threads is probably due



Multi- and Many-Threaded Heterogeneous Parallel Grammatical Evolution 233

Fig. 2 Execution timeline visualization of the five main evolutionary tasks of the multi-threaded
parallel GE with numbers of OpenMP threads ranging from one to ten. Vertical dashed lines
indicate the beginning of a generation. Total execution time (in seconds) of the evolutionary tasks
is displayed at the right of the graph, which does not take into account the startup tasks

to a higher evaluate runtime since the three OpenMP evolutionary tasks reduce
their respective runtime on three and six threads (see Fig. 1a). Figure 2 illustrates an
execution timeline of the five main evolutionary tasks of the multi-threaded parallel
GE with numbers of OpenMP threads ranging from one to ten, and highlights the
importance of parallelizing the evaluation of programs which is clearly the most
time-consuming hotspot. The representative run over a sample of 500 runs was
obtained from the calculation of the medoid using a fractional distance metric L 1

d

in a d-dimensional space:

L 1
d

(u, v) =
⎛

⎝
d∑

i=1

|ui − vi | 1
d

⎞

⎠

d

, (7)

where vectors u and v of size d = 30 are composed of the start and end time of each
startup and evolutionary tasks.

4.1.2 Sequential + Many-Threaded

In this next batch of experiments OpenMP is switched off temporarily, allowing
us to focus on the many-threaded parallel execution of two events: evaluate,
accelerated by three parallel strategies (PP, DP and PDP), and best, on both the
multi-core CPU and many-core GPU via OpenCL. Thus, the breeding phase is now
executed with only one thread, i.e. in sequential mode. Hereafter, this setup will be
referred to as many-threaded parallel GE.

Figure 3a provides a performance analysis of the OpenCL kernels—evaluate
and best, with their respective data transfer between host and device memories,
which is called data transfer—for each parallel strategy on each architecture.
According to that figure, the PDP OpenCL kernel was the most efficient strategy
for running evaluate on the GPU, followed by GPU/DP configuration, roughly
three times slower than the former. On the other hand, the PP OpenCL kernel
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Fig. 3 (a) Median execution time corresponding to the two OpenCL evolutionary tasks—
evaluate and best, with their respective data transfer between host and device
memories—for each of the six combinations between parallel strategies (PP, DP and PDP) and
architectures (CPU and GPU), besides the sequential version (SEQ). (b) Median execution time
of best and data transfer together over 30 runs as a function of the population size for
the SEQ, GPU/PDP and CPU/PDP configurations. Population size varied from 102 to 5 × 104.
(c) Improvement percentage that compares the median execution time of the sequential GE with
that obtained by the many-threaded parallel GE under each of the six configurations. (d) Median
speedup corresponding to evaluate and data transfer together, and to the many-threaded
parallel GE under each of the six configurations

turned out to be the best strategy for the evaluation task on the CPU, which is
about 20 times slower than the GPU/PDP configuration. The evaluate runtime
in sequential mode (SEQ) takes approximately 228 ms, whereas the GPU/PDP
configuration takes only 0.76 ms, about 300 times faster than the former. The data
transfer runtime relative to the evaluation process takes 0.34–0.37 ms for the
CPU, which tends to increase as population size increases. Fortunately, it is too
small when compared to kernel execution time, as shown in Fig. 3a. On the other
hand, it takes 0.37–0.64 ms for the GPU which requires an explicit data transfer.
Although it also seems too small, it is equivalent to the evaluate runtime for the
GPU/PDP configuration. The execution time of evaluate and data transfer
together achieves a speedup varying from 4.6 to 203.7 compared to its sequential
execution time, with the highest value obtained by GPU/PDP, followed by GPU/DP
with 76.2 (see Fig. 3d). All other configurations obtained speedup values below 15.
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In theory, the best runtime depends only on the compute device in which it
runs in a parallel way, i.e. it is independent of the strategy. The same goes for its
respective data transfer, except for the DP strategy which is a bit different
from the other two strategies, as discussed below. In fact, the differences observed
in best runtime between the three strategies belonging to the same compute device
can be attributed to statistical fluctuations, whose values are 0.03–0.05 and 0.008–
0.011 ms for the CPU and GPU devices, respectively, i.e. the GPU was on average
four times faster than the CPU. Their respective data transfer take 0.08–0.09
and 0.05–0.07 ms, whose maximum values came from the DP strategy due to the
additional step of transferring back the error values from the host memory to the
device memory—the fitness calculation initialized by the DP OpenCL kernel is
completed on the host (see Sect. 3.2). An intuitive explanation for the equivalence
between the CPU’s and GPU’s data transfer values is that the best kernel and
the parameter settings of the regression problem are very simple; thus, time cost of
the explicit transfer made by the GPU of the two tiny arrays B and I (which in the
case contain just eight elements each, see Sect. 3.4) is negligible. On top of that, the
overhead of the pocl CPU OpenCL implementation was estimated at approximately
0.08 ms; thus, the effective time spent on transferring data relative to best kernel
was on the order of microseconds for the CPU device. Adding the execution time
of best and data transfer, the CPU was on average almost two times slower
than the GPU, which in turn was nearly three times slower than the sequential mode,
as we can see in Fig. 3a. However, it does not impair the overall speedup since
the aforementioned runtime is two to three orders of magnitude smaller than the
evaluate runtime. According to Fig. 3b, the execution time of best and data
transfer together increases linearly with population size in sequential mode
while it remains almost constant for GPU/PDP configuration. From a population
size of 5 × 103, GPU/PDP was faster than sequential mode, being 11 times faster
when set up with a population of 5 × 104 programs. In the case of CPU/PDP, it
was better than sequential mode from a population size of 2.5× 104. The CPU/PDP
curve moves further away from GPU/PDP as the population size increases, reaching
a speedup of 6 when set up with a population of 5× 104 programs.

Regarding the sequential GE, the many-threaded parallel GE equipped with the
GPU/PDP configuration achieved a speedup of 22.2, going from 0.70 s to 31 ms
(see Fig. 3d). It corresponds to an improvement of 0.67 s in 0.70, or an impressive
reduction of 95.5% in total execution time of the evolutionary tasks, as shown in
Fig. 3c. The second better configuration, GPU/DP, achieved a speedup of 17.7. All
others obtained speedup values below 9.

4.1.3 Multi-Threaded + Many-Threaded

The multi- and many-threaded parallel GE arises from the combination of the three
OpenMP evolutionary tasks—generate, decode and derive—with the two
OpenCL evolutionary tasks—evaluate and best—in order to achieve a fully
parallel implementation, where both the breeding and evaluation are parallelized.
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Fig. 4 Execution timeline visualization of the multi- and many-threaded parallel GE with numbers
of OpenMP threads ranging from one to ten. The evaluate coupled with the PDP strategy and
best kernels were executed on the GPU. All the startup tasks were executed on the CPU. Total
execution time (in seconds) of the startup and evolutionary tasks is displayed at the right of each
graph. Vertical dashed lines indicate the beginning of a generation. The representative run over a
sample of 500 runs was obtained from Eq. 7, with d = 54

Although all six configurations will be considered here, the following discussion
emphasizes the GPU/PDP configuration as it is clearly the most power efficient one,
as shown in the previous section.

Figure 4 depicts an execution timeline of the heterogeneous parallel GE with
numbers of OpenMP threads ranging from one to ten. The evaluate coupled
with the PDP strategy and best kernels were executed on the GPU. Besides
the two events described in Sect. 2.1—rng init and evolution init—the
following four events also belong to startup tasks: input data, the loading
of the input dataset from disk; opencl init, which includes the process of
defining the platform and devices and configuring an abstract environment for
managing communication between host and device; build kernel, the creation
and compilation of kernels from source code; and create buffer, the allocation
of memory buffers for holding data. The last event also includes setting the buffers as
kernels arguments and initializing the input data buffer. Although the total execution
time of the startup tasks is roughly 4–10 times higher than that of the evolutionary
tasks, it is worth noting that only the first two generations were taken into accounted
for calculating the total execution time of the evolutionary tasks. In practice, the
algorithm iterates for thousands or more of generations, whereas the startup tasks
run only once; therefore, the startup tasks runtime becomes irrelevant in regard to
the total execution time of the algorithm.

From Fig. 4, it can be observed that the behavior of the total execution time of
the evolutionary tasks relative to the number of threads is similar to that obtained
from Fig. 1a—that is, it decreases up to eight threads and thereafter it increases—
as expected since the number of threads for the execution of the three OpenMP
evolutionary tasks is the only variant of the problem. However, note that evaluate
is clearly not a hotspot anymore, and other events can now be identified as
hotspots, such as generate, decode and derive. Therefore, the performance
gain in parallelizing them through OpenMP becomes quite expressive, as we can
see in Fig. 5a. For instance, the parallel heterogeneous GE with the GPU/PDP
configuration takes three times less time to run with eight threads than with only
one, going from 31 ms to 10 ms, i.e. an improvement of 68%.
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Fig. 5 Median speedup of the multi- and many-threaded parallel GE as a function of the number
of OpenMP threads when compared to (a) the many-threaded parallel GE and (b) the sequential
GE for each parallel strategy (PP, DP and PDP) on each architecture (CPU and GPU). The startup
tasks were not taken into account for calculating the execution time of the algorithm

Fig. 6 Execution timeline visualization of the multi- and many-threaded parallel GE for each
parallel strategy (PP, DP, and PDP) on each architecture (CPU and GPU) with eight threads. The
y-axis is in ascending order of total execution time of the evolutionary tasks. Total execution time
(in seconds) of the startup and evolutionary tasks is displayed at the right of each graph. Vertical
dashed lines indicate the beginning of a generation. The representative run over a sample of 500
runs was obtained from Eq. 7, with d = 54 for all strategies, except for DP that assumes d = 60

Figure 6 shows an execution timeline of the parallel heterogeneous GE for each
parallel strategy on each architecture with eight threads, displayed in ascending
order of total execution time of the evolutionary tasks. It reveals that evaluate
is still a hotspot for configurations other than GPU/PDP. By consequence, their
peak speedup values was 1.1–2.1, with the highest one obtained by GPU/DP with
eight threads (see Fig. 5a). Among the startup tasks, the opencl init event is the
most computationally costly one when the two OpenCL kernels run on the GPU.
However, it is not true for the CPU, whose the most costly event is build kernel.
Moreover, the total execution time of startup tasks on the CPU is about 10% higher
than that obtained by the GPU.

The parallel heterogeneous GE combines two major parallel decompositions:
breeding phase and evaluation of programs, besides the identification of iteration’s
best program. The parallel GE coupled with GPU/PDP configuration was 3.1 times
faster with eight threads than with one thread (see Fig. 5a), which in turn achieved
a speedup of 22.2 when compared to the sequential GE (see Fig. 3d). Therefore,
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the overall speedup of the former was given by the product of the two individually
attained speedups, that is 3.1×22.2∼=68.3 times faster than the sequential GE, going
from 0.70 s to 10 ms (see Fig. 5b). It represents an improvement of 0.69 s in 0.70, or
an impressive reduction of 98.5% in total execution time of the evolutionary tasks.
The second better configuration, GPU/DP, achieved a speedup of 2.1×17.7∼=37.7
with eight threads. All others obtained speedup values below 13.

4.2 In-Depth Kernel Analysis

The experiments presented in this section are an extension adapted to GE of the work
done by [2] and aim at providing an in-depth performance analysis of (1) evaluation
kernels and (2) data transfer between host and device memories as a function of two
parameters: population and dataset size.

Problem A controlled experiment that simulates a typical symbolic regression
problem.

Parameters and Methodology Population and dataset size varied from 102 to 5×
104. For each combination, a total of thirty independent runs were performed, and
the resulting median GPop/s7 over them was used as the estimated performance
per configuration. The GE fixed parameters were: 1 generation, crossover rate of
90%, per-bit mutation rate of 0.5%, tournament size of 1 program (no selection
pressure), genome size of 103 bits, gene size of 8 bits, and 16-bit ephemeral constant
precision. The grammar was adjusted in such a way that the size of all programs is
50 nodes, which contains sine, cosine, arithmetic operations, numerical constants,
and ten randomly sampled input variables uniformly distributed over the interval
[−1, 1]. The fitness function was defined as the Mean Average Error (MAE) on the
dataset.

4.2.1 Results

Figure 7 shows a three-dimensional plot of the evaluation kernel’s performance in
terms of billion GPop/s as a function of population and dataset size for each of the
three parallel strategies (PP, DP and PDP) executed on the CPU. Figure 8 is similar
to Fig. 7 for the GPU.

The four 3-D surface-shapes of Fig. 7 are all quite similar, particularly for the
CPU/PP and CPU/PDP configurations, which have equivalent mean, maximum
and minimum performance values. The difference in peak performance between
them is about 10%. Therefore, any of the three strategies can be used on CPUs
in practice. As mentioned earlier, this is a result of the CPU design which packs

7GPop/s stands for genetic programming operations per second and is equivalent to the number of
program “symbols” processed per second.
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a b

c d

Fig. 7 Performance in terms of billion GPop/s of evaluation kernel on the CPU via OpenCL as a
function of two parameters: population and dataset size for each of the three parallel strategies (PP,
DP and PDP), besides the sequential version. (a) CPU/PP. (b) CPU/DP. (c) CPU/PDP. (d) CPU
sequential mode

sophisticated control logic units dedicated to branch prediction, speculative, out-
of-order execution [13, 18], making its performance independent of parallelisation
strategy. On the other hand, GPU designs are characterized by a substantial compute
power as a result of the increase in the ratio of arithmetic to control logic units. This
makes GPUs very sensitive to the strategy, as we can see in Fig. 8. From Fig. 7, it is
observed that the performance does not vary greatly with population and dataset size
and quickly stabilizes at a level beneath the peaks. It is not evident, but this might
be due to cache misses, i.e. the effective cache size not being large enough to fully
accommodate the data. The DP strategy (Figs. 7b and 8b) as well as the GPU/PP
configuration (Fig. 8a) are highly dependent, respectively, on dataset and population
size, making them inefficient for low-workload applications.

Although the CPU/PP and CPU/PDP configurations are equivalent to each other,
the PP OpenCL kernel was the most efficient strategy running in parallel on the
CPU, with a mean performance of 0.82 billion GPop/s, which is about 16 times
greater than the sequential mode (see Fig. 7a, d). Given the four physical cores
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a b

c d

Fig. 8 As Fig. 7, but for the GPU. (a) GPU/PP. (b) GPU/DP. (c) GPU/PDP. (d) CPU sequential
mode

present on the tested CPU device, with 8 SIMD8 lanes each one, a speedup of
16 corresponds to half the theoretical maximum speedup (4×8 = 32), which may
seem disappointing but is in fact an achievement. Although the values belonging
to the aforementioned peak region vary little between them, the CPU/PP’s peak
performance was 0.89 billion GPop/s when set up with a population of 5 × 103

programs evaluated on a dataset of 103 registers, apparently without any obvious or
reasonable explanation for this.

As described in Sect. 3.3, in the PDP strategy each work-group evaluates a
different program while all its work-items execute the same instruction on different
registers of the dataset. Such a strategy fits well the GPU architecture, which sup-
ports the SPMD9 model among compute units and SIMD model among processing

8SIMD stands for Single Instruction Multiple Data and means that a single instruction is executed
on multiple data simultaneously.
9SPMD stands for Single Program Multiple Data and means that different compute units of a
compute device are able to execute different instructions simultaneously from the same kernel.
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elements within a compute unit [2]. The GPU/PDP performance increases rapidly
until reaching a quasi-plateau region, in which the improvement rate is much slower
(see Fig. 8c). In other words, the accelerator’s capacity has been saturated with
respect to this kernel and therefore no further gains are possible. Unlike GPU/DP
and GPU/PP, the GPU/PDP strategy does not require a large dataset or population
size to achieve optimal performance (see Fig. 8a–c). GPU/PDP obtained a mean
performance of 17.54 billion GPop/s, in contrast to just 0.05 billion GPop/s for the
sequential mode, which is about 350 times slower than the former (see Fig. 8c, d).
The highest peak performance was achieved by the GPU/PDP configuration with
19.65 billion GPop/s (population: 5× 104; dataset: 5× 104), followed by GPU/DP
with 17.64 billion GPop/s (population: 103; dataset: 5× 104).

According to Sect. 3.2, in the DP strategy all the processing elements execute
the same instructions on different registers of the dataset for a single program,
and thus it is well suited to heavy SIMD-based architectures like GPU [2]. The
GPU/DP configuration produces a 3-D surface-shape invariant to population size,
whose performance increases as dataset size increases, with a more pronounced
slope for dataset size between 102 and 104 (see Fig. 8b). The larger the dataset, the
lower the idleness of thousands of processing elements available on the accelerator
device. On the other hand, the PP strategy is not well suited to the GPU architecture
since each processing element evaluates a different program and, by consequence,
the instructions within a compute unit likely diverge most of the time, degrading the
performance [2]. Although the GPU/PP’s performance increases as population size
increases, the overall performance is weak, just 1 billion GPop/s (see Fig. 8a).

When the data transfer time between host and device memories is also
taken into account for calculating the median GPop/s, the GPU/PDP performance
becomes more dependent on dataset size, with a clear performance loss as the
dataset size decreases, worsening up to 70–85% for dataset size equal to 100 (see
Fig. 9). As a result, the overall performance reduces from 17.54 billion GPop/s to
14.62 billion GPop/s, but the peak performance of 19.50 billion GPop/s (population:

a b

Fig. 9 Performance in terms of billion GPop/s of evaluation kernel (a) taking and (b) not taking
into account the data transfer between host and device memories for GPU/PDP configuration
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5 × 104; dataset: 5 × 104) did not change much. All the other five configurations
obtained a relative performance loss of maximum 21% (not shown). Note that
the GPU/PDP’s 3-D surface-shape now resembles the GPU/FP’s one in Fig. 8b,
although the throughput of the former is still better than that of the last one.

5 Conclusions

This chapter presented a heterogeneous parallel model for the GE algorithm through
OpenMP and OpenCL, in which the evolutionary tasks are decomposed into multi-
and many-threads, matching respectively the speciality of multi- and many-core
processors. The goal is to bring together the best of each computing device in
order to provide a fast, efficient and scalable GE. In this token, the many-threaded
OpenCL kernels are responsible for evaluating the programs and finding the best
ones at each iteration, while the multi-threaded OpenMP tackles the breeding
phase. Three well-known parallel strategies were proposed for the evaluation of
programs and were assessed on a GPU and multi-core CPU, totaling six different
configurations: PP/CPU, DP/CPU, PDP/CPU, PP/GPU, DP/GPU and PDP/GPU.

In the case-study experiments consisting of a relatively small population and
dataset, PDP/GPU was by far the most performant strategy for running the
evaluation, followed by DP/GPU, CPU/PP, CPU/PDP, CPU/DP, and GPU/PP far
behind with the worst performance. The parallel heterogeneous GE accelerated by
the GPU/PDP configuration was 68 times faster than the sequential GE, resulting
from the combination of two individual speedups, that is 22.2×3.1∼=68.3. The first
one is attributed to the OpenCL kernels, while the second one to the OpenMP
evolutionary tasks with eight threads. It shows the importance of fully parallelizing
the GE algorithm to obtain better performances.

A controlled experiment that simulates a typical regression problem made it pos-
sible to analyze the effects of varying population and dataset size on the performance
of evaluation kernels as well as estimate the potential of each configuration. As
expected, the GPU is far more efficient than the CPU for the parallel execution
of evaluation kernels. The three strategies are very similar with respect to the 3-D
surface-shape and performance when run on the CPU. Despite the fact that any
strategy can be run on the CPU without much performance loss, it would not be
chosen over the GPU to perform the evaluation phase in practice—the principle
of efficiency is to assign to a processor the type of workload its architecture was
designed for. On the GPU device, in turn, PDP was the best overall strategy for
running evaluation kernel mainly because (1) it does not require a population and
dataset size as large as GPU/PP and GPU/DP to maximize throughput, and (2) still
provides the highest mean performance, which is about 350 times faster than that
obtained by sequential mode. GPU/DP is an interesting alternative strategy that
is indicated for problems whose the dataset size is large enough to saturate the
accelerator.
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Altogether, the performance analysis highlighted the importance of carefully
decomposing both the breeding and evaluation phases of GE into heterogeneous
multi- and many-threaded systems when dealing with large-scale real-world prob-
lems.
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Comparing Methods to Creating
Constants in Grammatical Evolution

R. Muhammad Atif Azad and Conor Ryan

Abstract This chapter evaluates the performance of various methods to constant
creation in Grammatical Evolution (GE), and validates the results by comparing
against those from a reasonably standard Genetic Programming (GP) setup. Specif-
ically, the chapter compares a standard GE method to constant creation termed digit
concatenation with what this chapter calls compact methods to constant creation.
Constant creation in GE is an important issue due to the disruptive nature of
ripple crossover, which can radically remap multiple terminals in an individual,
and we investigate if more compact methods, which are more similar to the GP
style of constant creation (Ephemeral Random Constants (ERCs), perform better.
The results are surprising. Against common wisdom, a standard GE approach of
digit concatenation does not produce individuals that are any larger than those from
methods which are designed to use less genetic material. In fact, while GP charac-
teristically evolves increasingly larger individuals, GE—after an initial growth or
drop in sizes—tends to keep individual sizes stable despite no explicit mechanisms
to control size growth. Furthermore, various GE setups perform acceptably well on
unseen test data and typically outperform GP. Overall, these results encourage a
belief that standard GE methods to symbolic regression are relatively resistant to
pathogenic evolutionary tendencies of code bloat and overfitting.

1 Introduction

Typically in statistics and Machine Learning [15], regression involves finding
optimal (at least in a local sense) values of parameters of a given function to
explain a given data set. Therefore, Machine Learning methods like Artificial
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Neural Network (ANN), and Support Vector Machine (SVM) work efficiently partly
because, with a known target function, they only explore the parameter space to
minimise the error between expected and predicted outputs: for example, although,
an SVM employs a kernel function to project a low dimensional feature space
on to a high dimensional feature space (even an infinite feature space, depending
upon the choice of the kernel function), the choice of the kernel function is pre-
determined; thereafter, optimisation tunes parameters of the SVM to maximise
margins between training instances and a separating hyperplane. Likewise, before
the so called Deep Neural Networks (which actively employ feature engineering
methods) became popular, learning in early ANNs simply optimised a set of weights
via backpropagation.

Genetic Programming (GP) takes regression to another level: it simultaneously
explores spaces of both possible functions and their associated parameters (con-
stants); hence, regression with GP is commonly referred to as Symbolic Regression.
Therefore, finding suitable numeric constants is essential to how GP performs.
However, GP typically does not involve specialised mechanisms for optimising
numeric constants. Instead, GP uses ephemeral random constants (ERCs) [12],
that randomly initialise numeric terminal nodes in a GP population. Thereafter,
genetic operators recombine and filter out (possibly erroneously) these ERCs. The
combined tasks of optimising structure and constants can be very difficult: for
example Keijzer [10] noted that given a target function of 100 + x2 such that
x ∈ [−1, 1], GP approximated the numeric constant 100 but lost the genetic material
to encode x2. To combat this, Keijzer proposed linear scaling, a form of linear
regression to optimise the slope and intercept of evolving GP functions to assist GP.
Other proposals include numerical methods [14, 23] as well as specialised mutation
operators [9, 22].

This chapter compares methods for evolving constants in Grammatical Evolution
(GE) [18] on a number of problems from the symbolic regression domain. GE is a
genetic programming system that maps a genotype, a linear string of 8 bit integers
termed codons, to a functional expression from a language of choice, which is
defined by a context free grammar (CFG). Usually, GE uses digit concatenation
[4] to evolve constants. In this method, a string of GE codons select the constant
defining rules from a grammar to yield the desired constant.

Since digit concatenation uses several codons to produce a number, that number
can change when passed onto offspring, unlike a number encoded in a more compact
way, i.e. as in GP. This is due to the so-called ripple effect of GE crossover, [19]
which propagates changes to genetic material from left to right. We compare digit
concatenation to two other compact methods that do not require several codons
to encode a constant: these are, a GE version of ERCs called persistent random
constants (PRCs) [4] and a codon injection method that directly converts a GE
codon into a floating point value.

In order to compare digit concatenation with the compact methods, we take the
following measures. First, much like in [4, 8], we compare the performance results
on a suite of symbolic regression problems where error minimisation is a function of
both finding a suitable mathematical expression and optimising constants therein.
This (optimising constants alongside finding expressions) differs from some earlier
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comparisons of constant creating methods in GE which optimised constants given a
fixed mathematical expression [1, 2, 7]; after all, as [22] notes, optimising constants
alongside mathematical functions is a different challenge and, we believe, more
relevant to the GP community. Furthermore, we compare different methods both
with and without linear scaling and also compare against the benchmark results
from GP because GP is commonly used for symbolic regression. Moreover, previous
work solely compared training results; instead, we also consider unseen test data.
Finally, this works compares lengths of genomes evolved by various constant
creating methods to see if any method evolves more parsimonious solutions.

The results show that GP consistently outperforms GE on training data; however,
on the test data, GE, regardless of the constant creating method, does better.
However, among themselves, the various GE methods perform equally well on all
the criteria. Notably, the genome lengths with digit concatenation are no greater than
those with the compact methods. Moreover, using GP-like PRCs does not bridge the
gap in training results of GP and GE, which suggests that the key difference between
GP and GE is how the respective genetic operators behave. We also conclude that
the compact methods are not effectively compact, give our reasons for that and give
directions for further work.

The rest of the chapter is organised as follows: Sect. 2 gives a background to
constant creating methods in GE and builds a motivation to this study; Sect. 3
describes the experimental setup, presents the results and discusses the lessons we
can learn from these results; finally, Sect. 4 concludes the chapter.

2 Background

Digit concatenation with GE [4, 7] requires a CFG with appropriate rules for
generating numeric constants. For example, with the grammars below and a rule
<expr> ::= <const> | -<const>, cat-UnLtd can, in theory, encode
any real constant, whereas cat-0-to-5 limits the values to the domain (−5, 5).

cat-UnLtd:

<const> ::= <cat>.<cat>
<cat> ::= <cat><digit>

| <digit>
<digit>::= 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

cat-0-to-5:

<const>::= <fdig>.<cat>
<cat> ::= <cat><digit>

| <digit>
<fdig> ::= 0 | 1 | 2 | 3 | 4
<digit> ::= 0 | 1 | 2 | ... | 9
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This approach has some side effects. First, the number of codons GE takes to
encode a constant is equal to the number of digits in it. Later, crossover can break
the constant so that it does not pass on to the offspring intact. This is unlike as
in GP, where an ERC is atomic. Thus, a stronger causality exists in GP, where
offspring are likelier to resemble their parents. In fact, as noted in [22], a small
number of ERCs quickly dominate the population, with many appearing multiple
times in later generations. This is what initially motivated us to ask if GE can
benefit from a more GP-like approach, as it appears as though GP first settles on
the constants and then builds structure (functions) around them. Second, GE is free
to encode a greater number of digits than that allowed by the underlying machine
architecture, and as the machine ignores these additional digits, they provide a
bloating opportunity. After all, concatenation of additional digits does not affect
the fitness of the corresponding individual, and if a GE individual benefits from
bloating in the manner that GP individuals do [13], then digit concatenation should,
on average, produce individuals of increasingly larger sizes. Thus, the next question
is: does digit concatenation produce longer genomes than those with an ERC type
approach with GP or its counterparts in GE? If the answer is yes especially while
digit concatenation performs at most as good as the ERC-styled constants, then a
GE practitioner should discard the former in favour of the latter to avoid bloat.

To answer these questions we consider two compact representations for GE con-
stants. The first, termed persistent random constants (PRCs) [7] embeds randomly
generated constants (from a given range) inside the grammar as alternative choices.
A single codon can pick a constant by selecting the corresponding rule. Previously
digit concatenation outperformed PRCs when the objective was to evolve a single
constant [7]. As the second method, we consider a codon injection method [16, 17],
whereby when the non-terminal <const> is read, the following 8 bit codon value
is converted into a floating point value in a given range. As in [1, 2], only a single
codon produces a numeric constant.

The above set up investigates if compact representations are effectively more
compact: that is, whether these methods produce higher fitness and smaller
genomes. We also note results on unseen data to see if any method produces
better predictive models.

3 Experiments

For the best fit individual we note: score on training data (best fitness); score on
unseen (test) data; and genome length. We record genome lengths to compare which
method requires more genetic material. Digit concatenation takes multiple codons
to create a single constant (unless the constant has just a single digit); likewise,
multiple PRCs may combine to create a constant. We record these statistics every
generation and present their mean values over 100 independent runs. Moreover, we
also record all the statistics with linear scaling, which we introduce in some detail
below.
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Linear scaling deterministically optimises two linear parameters to minimise the
sum of squared errors between target values (t (x)) and approximate values (y(x)),
where x represents a vector of independent variables. The linearly scaled sum of
squared errors (SSE) is calculated as:

SSE(t (x), a + by(x)) =
N∑

i=1

(t (xi)− (a + by(xi)))
2

where

b =
∑N

i=1(t (xi)− t)(y(xi)− y)
∑N

i=1(y(xi)− y)2
, a = t − by.

Keijzer [10] has shown that linear scaling significantly boosts the performance of
GP on training cases; results on test cases were not presented. Due to the simplicity
and widespread usage of linear scaling, we employ it in this study.

Note, we use results for GP as a benchmark. Clearly, GP differs from GE in
many ways: the genetic representation and genetic operators differ; consequently,
we expect some difference in performance. However, since GP is more widely used
for symbolic regression, we consider its results to validate the performance of GE.
We want to see if the difference in performance is consistent (GP is always better or
worse than GE), and whether using a relatively more GP-like approach with PRCs
bridges the gap in performances of GP and GE.

We consider five different constant creating methods for GE. These are (legends
in brackets): digit concatenation with constants from an infinite real domain
(cat-UnLtd); digit concatenation with absolute values of constants limited to
(0, 5) (cat-0-to-5); 50 and 25 persistent random constants embedded in the
grammar (50-PRC-0-to-5 and 25-PRC-0-to-5) also derived from (0, 5);
and the codon injection method that directly decodes a GE codon into a numeric
value (codon-0-to-5). All these methods can also generate negative numbers.

The grammars incorporate problem specific input variables and arithmetic
operators in a prefix notation as below.

<expr> ::= mul( <expr> , <expr> )
| sub( <expr> , <expr> )
| add( <expr> , <expr> )
| div( <expr> , <expr> )
| ( <expr> )
| <var> | <const> | -<const>

<var> ::= X1 | .... | XN
<const> ::= "the respective constant creating

method"

Here <var> contains as many variables as the problem requires. Also, note that
the grammar allows for both positive and negative constants. <const> expands to
a set of rules defining the corresponding constant creating method as exemplified in
Sect. 2.
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3.1 Grammars Used for Experiments

We now describe the respective grammar fragments expanding the non-terminal
<const> for each constant creating method with GE. Digit concatenation methods
cat-UnLtd and cat-0-to-5 are designed as described in Sect. 2. Below we
describe the ERC-styled approaches in GE.

N-PRC-startval-to-endval:

<const> ::= "N constants in interval (start, end)"

The following grammar fragment reads the next unread eight bit codon value and
converts it into a floating point value in the given domain: f:-0+5 implies a floating
point domain of [0, 5]. This is slightly different from the other setups in that the
endpoints of the domain 0 and 5 are also part of the domain. The converted floating
point value gets embedded into the phenotype.

codon-0-to-5:

<const> ::= <GECodonValue:f-0+5>

3.2 Problem Suite and Evolutionary Parameters

All experiments use a population size of 500, roulette wheel selection, steady
state replacement and crossover with a probability of 0.9. For GE, we use the
conventional [18, 21] bit wise mutation with a probability of 0.01, while for GP,
we use point mutation with a standard probability value of 0.1 [12]. We use ramped
half and half initialisation for GP with an initial maximum tree depth of 4; for GE we
use the grammatical counterpart of this initialisation termed sensible initialisation
[21]. Sensible initialisation uses a context free grammar to generate derivation trees
for GE using a ramped half and half approach. We use a maximum initial depth of
derivation trees of 10 (which is larger than 4 for GP) since a big derivation tree can
still yield a small abstract syntax tree and GE grows trees at a slower rate than with
standard GP [4].

Although we do not constrain tree sizes or maximum depth for GP (and GE),
in the experiments reported here the average tree size for GP never exceeds 250;
this is well below the maximum size allowed by a commonly used maximum tree
depth of 17 for binary trees. A useful side effect, though, of imposing a maximum
tree depth is that this imposition can prohibit emergence of extremely deep skinny
trees, which can result if the functions set contains unary functions (those requiring
a single argument). Prohibiting deep skinny trees that utilise unary functions can
be useful because often these unary functions are transcendental (for example,
sin, cos, exp, log) that encode a particularly non-linear behaviour which, although
flexible enough to hug a response surface, can also overfit the training data [24]. In
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this study, however, we only use binary arithmetic functions; therefore, omitting a
depth limit does not disadvantage GP.

We use six different problems from the symbolic regression domain here. As
Keijzer [10] notes, choosing a good set of problems for testing symbolic regression
is difficult in the absence of an established set of benchmarks. Like Keijzer, we use
the following problems from previous work on symbolic regression.

f (x) = 0.3xsin(2πx) (1)

f (x) = 1+ 3x + 3x2 + x3 (2)

f (x, y) = 8/(2+ x2 + y2) (3)

f (x, y) = x4 − x3 + y2/2− y (4)

f (x, y) = x3/5+ y3/2− y − x (5)

f (x1, · · · , x10) = 10.59x1x2 + 100.5967x3x4 − 50.59x5x6

+20x1x7x9 + 5x3x6x10 (6)

(1) comes from [11]; (2), also termed as Binomial-3, is a scalably difficult problem
for GP [6] and has been investigated with GE [4]; (3), (4) and (5) come from [23];
and (6), referred to as Poly-10 in the figures in this chapter, is a version of a difficult
problem described in [20]. The dimensionality of these problems varies between 1
and 10 and their difficulty to GP type approaches also varies as is visible from the
scales of the best fitness plotted in Fig. 1.

We use a variant of the standard one point crossover for GE termed effective
crossover [17]. Since the entire lengths of GE chromosomes may not be used for
mapping, the non-mapping regions in GE chromosomes can grow larger and larger;
this transforms crossover into a duplication operator as crossing over in the non-
mapping regions does not innovate in the phenotype space. Therefore, the effective
crossover restricts the crossover point to within the mapping regions.

As noted in [10], protected division (and protected operators in general) can lead
GP to producing models that do not generalise well to unseen data; therefore, we do
not use protected division. Instead, in the case of a division by zero, we penalise the
offending individual by assigning it the worst fitness value of 0.0.

All the GE experiments use libGE [17], while the GP experiments use TinyGP.1

Evolutionary runs terminate after completing 50 generations. GP uses 50 constants
from the domain (−5, 5) and like GE, only uses arithmetic operators.

For each problem, we randomly initialise input variables between −1.5 and 1.5
and generate 100 data points. We randomly choose 50 data points for training and
an equal number of data points for testing on unseen data (test data).

1http://cswww.essex.ac.uk/staff/rpoli/TinyGP/.

http://cswww.essex.ac.uk/staff/rpoli/TinyGP/
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3.3 Results

Figures 1, 2, 3, 4, 5, 6 plot the results of the experiments. The x-axis consistently
corresponds to 50 generations. The training and test scores are sums of squared
errors (SSE) normalised between 0.0 and 1.0 (1.0 being the ideal score) as follows:

score = 1

1+ SSE
.

Each sampled point in the plots depicts an average over 100 independent runs.
As in [5], the 95% confidence limits of the error bars at each point are computed as
follows:

X ± 1.96
σ√
n
,

where X and σ are the mean and standard deviation of n observations; n = 100
represents the number of runs in this case. We can be 95% confident that the
statistical population lies within these limits, and that a lack of overlap with another
error bar means that the corresponding populations are different.

Figures 1–3 plot the results for experiments without using linear scaling. Figure 1
plots the best fitness on training data and shows that none of the GE constant
creating setups stands out consistently. In fact, various GE methods do quite
similarly. Moreover, GP does at least as well as GE (and usually better). Also, using
the PRCs does not bring GE any closer to GP.

Of particular interest is cat-UnLtd: unlike all other methods, GE chooses from
an infinite domain of constants. Except for problem (6), a domain of [−5,5] is
suitable and even advantageous. However, cat_UnLtd does no worse than the
other GE methods, suggesting that the larger range of constants available (and the
correspondingly larger search space) poses no extra difficulty.

For problem (6) we also tried a domain of [−49,49] to assist methods other than
cat-UnLtd in approximating important constants of 100 and 50 but even that
did not improve the results; therefore, we do not further discuss those experiments
in this chapter. Results also do not show that the brittle nature of constants with
digit concatenation when facing crossover is a disadvantage any more than that with
compact methods: both cat_UnLtd and cat-0-to-5 perform competitively
with respect to the compact methods.

Figure 2 plots the results for the same individuals as in Fig. 1 on the unseen data.
Again, no single GE method stands out. GP, however, changes behaviour on the
unseen data: unlike on the training data where GP performed at least as well as
GE methods, it now performs only at most as well as GE methods, and some times
significantly worse. Again, using PRCs does not affect GE significantly. Let us also
consider results on growth of genome lengths before further commenting on this
difference in performance on the unseen data.
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Fig. 1 This figure plots mean of best fitness achieved per generation for all the problems. No GE
setup wins or loses consistently. On four problems, GP is significantly better than any GE method

Next, we check if digit concatenation costs more by requiring longer genomes.
Figure 3 plots the genome lengths for the best fit individuals and shows that again
digit concatenation is no worse than the compact methods. Moreover, while GP
genomes clearly grow towards the end of the runs, the lengths of GE genomes
remain relatively stable after an initial growth or drop. Note that GE genomes
encode derivation trees instead of abstract syntax trees (ASTs) in GP. However,
the set of leaves of a GE derivation tree can be interpreted as an AST and this AST
can be much smaller than the corresponding derivation tree; hence, at the end of the
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Fig. 2 This figure plots mean of Test Score per generation corresponding to Best-Fit individuals
reported in Fig. 1. No GE setup wins or loses consistently. On three problems, performance
consistently degrades for GP

runs the ASTs encoded by GE derivation trees are significantly smaller than those
produced by GP even when the genome lengths are similar.

Although a deeper investigation into the exact nature of functions evolved by
GP and GE may clearly explain the difference in their respective performances on
unseen data, at this stage, a correlation between genome growth (or lack thereof in
GE) and corresponding performance on the unseen data is visible. Although, we
can not claim a causal relationship just yet, it is possible that by restraining genome
growth, genetic operators in GE prevent overfitting.
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Fig. 3 This figure plots the mean genome lengths of the best fit individuals reported in Fig. 1. No
GE setup maintains significantly different lengths

Next, we consider results with linear scaling.
While, as expected, linear scaling helps improve best fitness for all the setups

during training, the relative performances of various GE methods remain mutually
competitive. Also, with linear scaling, the gap in the performance of GP and GE
narrows towards the end of the run; however, again, none of the compact GE
methods performs consistently better or worse than digit concatenation.
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Fig. 4 (With Linear Scaling): this figure plots mean of best fitness on training data achieved per
generation for all the problems. 0-to-5 in the legends means that the constants ranged between 0
and ± 5. None of the GE setups wins or loses consistently. Generally, GP is quicker than GE to
reach better fitness; however, results converge towards the end of the runs

The scores on test data in Fig. 5 are also similar to those without linear scaling:
again, all of the various GE setups perform competitively; similarly, GP performs at
most as well as GE on the unseen data.

Finally, the results on genome lengths with linear scaling again show that
GE methods show no tendency to grow consistently while GP clearly shows an
increasing trend.
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Fig. 5 (With Linear Scaling): this figure plots mean of Test Score per generation for the Best-Fit
individuals. No GE setup wins or loses consistently. On all but one problem GE does not indicate
overfitting, whereas GP does so on at least four occasions

3.4 Discussion

The results from Sect. 3.3 show that with the given evolutionary parameters and data
sets, GE performs equally well with a variety of constant creating methods; however,
GE differs significantly from GP. Notice, we only used standard configuration
parameters for the respective algorithms to see if performances differ significantly
when these various algorithms are used off the shelf ; therefore, we did not attempt
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Fig. 6 (With Linear Scaling): this figure plots the mean genome lengths of the best fit individuals
reported in Figure 4. 0-to-5 in the legends means that the constants ranged between 0 and ± 5.
None of the GE setups maintains significantly different lengths

optimising the configuration parameters to individual problems. The best fitness
results, particularly without linear scaling, show that GP trains better than GE;
however, it does so at the cost of degrading test set results. This is not altogether
surprising given the growing GP literature which aims to improve performance on
unseen data [11, 24]. What is surprising, however, is that GE does so much better,
at least on these problems.

The real focus of this work, however, is on comparing various constant creating
methods with GE. Digit concatenation is natural and easy to implement with GE;
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however, it can take many codons to encode a single constant. As a result, GE has
to find a right sequence of codons and then ensure that crossover does not break
that sequence. Moreover, with the ripple crossover [19] in GE, constants can not
always transfer intact from the parent to offspring. However, the results here show
that the compact methods (PRCs and codon injection) do not train better than
digit concatenation; this agrees with results in [4, 7]. However, on a greater set
of problems, we additionally find that compact methods produce neither smaller
genomes (surprisingly) nor better test set results.

The question then is: why does digit concatenation work as well as the other
methods? There can be two reasons. First, even with the compact methods if the
desired constant is not available, evolution combines various constants to get the
right one. Thus, PRCs, or ERCs in GP, are not always less breakable with crossover.
Moreover, breakability with digit concatenation is not always bad, because it also
brings tunability whereby genetic operators modify only a part of a constant. In fact,
when the constant is reasonably long the chances of modifying its less significant
part automatically increase, thereby decreasing both the chances and magnitude of
an unfavourable change to the constant, and—by extension—to the overall fitness
of the corresponding individual.

Secondly, [3] showed for a symbolic regression problem that crossover mostly
produces offspring with significantly worse fitness values. Also, [22] showed that
even with a careful numeric mutation that only slightly changes the constants in a
GP tree, crossover does no better than with random mutation that uniformly replaces
a constant from within a given range. Despite that GP trains well in this chapter. This
suggests that passing constants from the parents to offspring is not crucial to GP:
after all, even a constant ideal for a parent may be totally unsuitable for the offspring.

Genetic operators in GP and GE, by design, are disruptive and rely on chance and
genetic convergence to ensure causality; in fact, a genetic and phenotypic change
is the norm and not an exception, especially in the early (exploratory) phase of
evolution. Therefore, in the light of the discussion above, an effort solely to make
constants compact appears misplaced while the overall genetic and phenotypic
structure remains fragile. In fact, the apparently more disruptive ripple crossover
in GE generally performs better on the unseen test data, and therefore, perhaps
such a disruption is good news. Thus, to further improve the accuracy of symbolic
regression, GP/GE should use external methods that can tune the constants to suite
whatever structure genetic operators have produced; these external methods can be
numerical (such as in [10, 14, 23]) or evolutionary (mutation operators specifically
for tuning constants, evolution strategies or real coded genetic algorithms). In the
mean time, and especially due to an absence of performance differential across
various GE methods, digit concatenation can stay as a default method of choice
because it requires no problem specific information.
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4 Conclusions

This chapter compares the so-called digit concatenation method of creating con-
stants in Grammatical Evolution with what this chapter calls the compact methods
to creating constants. The chapter raises two questions: first, whether the constants
with digit concatenation are so brittle against crossover that taking a more GP-like
approach to constants with compact methods improves the performance of GE;
and second, whether digit concatenation breeds longer genomes than those with
compact methods. The results from the problems considered in this chapter suggest
that the answer to both the aforementioned questions is a resounding no. Because
compact representations may also have to synthesise a constant when a suitable one
is not available, we hypothesise that these constants are also not robust enough to
outperform digit concatenation.

A fascinating result is that, although GP outperforms GE on training data, GE
actually does substantially better on unseen test data.

The next steps in this research will be to do further critical evaluation of the
performance of GE on test data, as well as its ability to generalise. In particular,
work such as [11, 24] can be added to GE to ascertain if GE enjoys the same
benefits that GP does from them. Finally, we observe that the disruptive nature of
the ripple crossover in GE potentially produces better results on the unseen data.
While overfitting on training data is a concern shared by the entire machine learning
community, and code growth generally afflicts GP, GE appears inherently resistant
to these undesirable behaviours.
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Grammatical Evolution in Finance and
Economics: A Survey

Anthony Brabazon

Abstract Finance was one of the earliest application domains for Grammatical
Evolution (GE). Since the first such study in 2001, well in excess of 100 studies
have been published employing GE for a diverse range of purposes encompassing
financial trading, credit-risk modelling, supply chain management, detection of tax
non-compliance, and corporate strategy modelling. This chapter surveys a sample
of this work and in doing so, suggests some future directions for the application of
GE in finance and economics.

1 Introduction

The application of computational algorithms whose design is metaphorically
derived from phenomena in the natural world [11, 30] to finance and economics has
providence dating back some 30 years. A huge literature running to thousands
of papers has resulted. Previous survey articles spanning these contributions
include [26, 29]. There have also been several edited volumes covering this area
[20, 21, 27, 28, 34, 35, 37]. A good introduction to the application of biologically
inspired algorithms to various aspects of financial modelling is provided in [18].

The late 1980s and early 1990s saw a plethora of studies applying (initially)
neural networks for financial forecasting purposes and (slightly later) evolutionary
approaches, particularly genetic algorithms (GAs). In the latter case, attention was
primarily focused on the application of GAs for model parameter optimisation
and variable selection [8, 45]. As Evolutionary Automatic Programming (EAP)
methodologies such as Genetic Programming (GP) were introduced [59, 61] they
too were applied by practitioners and researchers for economic modelling, financial
forecasting [57], and trading system induction [5]. A significant feature of these
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methods was that, unlike neural networks, EAP approaches held out the potential to
easily incorporate domain knowledge and to generate human-readable models.

It is an interesting footnote in the history of GP that one of the earliest exemplar
applications of the methodology by John Koza was to recover the well-known
exchange equation M = PQ/V which relates the money supply (M), price level
(P ), gross national product (Q), and velocity of money (V ) in an economy [59, 60].
Somewhat quaintly, the paper notes that a then state-of-the-art Apple Macintosh II
PC was used to access the training data for the study!

The first finance-related papers which employed a Grammatical Evolution (GE)
methodology were published in 2001 arising quite shortly after GE’s introduction
in 1998 [78]. With the benefit of hindsight it is perhaps unsurprising that finance
was one of the early application domains for GE given the stream of related
research which was arising in GP around the same time. In common with GP,
much of the early GE research in finance was proof of concept in nature, being
constrained by the availability of computing power and data (relative to the
abundance of both resources today). Nonetheless, this work laid the foundation for
more comprehensive subsequent studies which also took advantage of the increasing
maturity of GP and GE methodologies. By the current day, application of GP
and GE approaches in finance have moved beyond academic studies to include
implementation in multiple instances by industry practitioners.

1.1 Structure of Chapter

In this chapter a survey of the literature which has applied GE to finance and eco-
nomics since 2001 is provided, along with some suggestions for future research. As
with any survey, there are difficult choices in deciding which research contributions
to include and which to omit. By design, a broad coverage of the relevant literature
is provided and this precludes detailed discussion of individual studies.

The rest of this chapter is organised as follows. In the following sections we
introduce the application of GE across a range of financial applications including
financial trading (Sect. 2), credit-risk modelling (Sect. 3), supply chain management
(Sect. 4.1), detection of tax non-compliance (Sect. 4.2), and corporate strategy
modelling (Sect. 4.3). Section 5 concludes this chapter, outlining some opportunities
for future work.

2 Financial Trading

The earliest financial applications of GE were for the purposes of financial trading
[22, 68, 69]. A variety of trading approaches are seen in practice and we outline
three of these below in order to place the relevant GE literature into context.
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2.1 Fundamental Analysis

Taking the example of investing in a share, investment using a fundamental analysis
approach concentrates on the use of accounting and other information about a
company, as well as industry and macro-economic data, in order to identify
companies which are mispriced by the market. In other words, the object is to
identify shares which are good value (underpriced by the market), or shares which
are overpriced by the market (and therefore are candidates for ‘shorting’).

To apply this approach, the investor needs to develop stock screening rules in
order to decide which shares to select. The utility of these rules can be tested using
historical data, with the best rule (or set of rules) then being used for investment
purposes. EAP methods such as GP or GE can be applied to evolve the actual
structure of the filter rules. In spite of the widespread use of fundamental analysis
(including the application of EAP methods) by actively-managed investment funds,
few academic studies have explored the application of EAP for the task of filter rule
development.

2.2 Technical Analysis

Under a technical analysis approach, investors attempt to identify imbalances in
the supply and demand for a financial asset using information from the time-series
of the asset’s trading price and volume [64]. Technical indicators (pre-processed
price and volume time series data about a financial asset) can be used in isolation,
or combined, in order to produce a ‘trading signal’. For example, one technical
indicator that technical analysts could consider is the moving average convergence-
divergence (MACD) oscillator, calculated by taking the difference of a short-run and
a long-run moving average. If the difference is positive, it is taken as a signal that
the market is trending upward, with a buy signal being generated when the shorter
moving average crosses the longer moving average in an upward direction [64]. A
sell signal is generated in a reverse case. Therefore, a sample MACD trading rule is:

IF x-day MA of price ≥ y-day MA of price

THEN Go Long ELSE Go Short

where x < y (for example x = 10 and y = 50). The MACD oscillator is a crude
band-pass filter, removing both high-frequency price movements and certain low-
frequency price movements, depending on the precise moving average lags selected.

A trader who wishes to construct a trading system using technical indicators as
inputs faces several decisions, namely:
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1. Which indicators will be used?
2. What parameter values (lag periods used to calculate the indicator and threshold

values for the indicator to trigger a trading action) should be used?
3. How should the indicators be combined to produce a trading signal?

This results in a high-dimensional search space which is suitable for EAP
methodologies.

2.3 Arbitrage

Arbitrage approaches to trading aim to profit by exploiting price differences between
financial instruments, trading on different markets or trading in different forms. For
example, suppose a share traded on one stock exchange for $23.78 and on another
for $23.82, an investor could arbitrage by buying at the lower price and selling
simultaneously at the higher price. As would be expected, such a simple arbitrage
opportunity would tend to be closed very quickly and transactions costs of buying
and selling can negate apparent arbitrage possibilities.

There are a plethora of arbitrage trading strategies employed in financial markets.
One exemplar, based on Put-Call Parity, is illustrated in [86]. The concept under-
lying this trade is that the price of a ‘long’ position on an asset and an associated
put (the right to sell that asset in the future at a specified price) must be equal to
the price of a long call on the same asset and a long position in a risk-free bond. If
either the put or call option are mispriced the investor can, in theory, make a risk-
free gain by constructing a portfolio of the four financial instruments. The above
example, describes an arbitrage opportunity between the cash market (for the asset)
and the options market. Arbitrage opportunities can also exist between cash and
futures markets and between futures and options markets.

2.4 GE and Trading

From the above discussion it is evident that there are a variety of trading approaches
to which model induction approaches could be applied. Thus far, the bulk of
applications of GE, and indeed other model induction methodologies, have adopted
a technical analysis perspective. Within this perspective, the trading time horizon
can be varied from inter-day to high-frequency trading, with the choice of trading
horizon impacting on the temporal resolution of input data required by the trading
system. A multiplicity of factors come into play in operationalising trading sys-
tems in the real-world including market microstructure, market structure, money
management, the risk appetite of the investor and their trading ‘style’. Academic
contributions rarely consider all of these factors in detail.
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2.4.1 Applications of GE for Trading System Design

The earliest study applying GE for trading system design, O’Neill et al. [68],
focussed on the UK FTSE 100 index from the period 26/4/1984 to 4/12/1997.
Initially, attention was restricted to the generation of a moving average inter-day
trading system.

The grammar used to create the trading systems in this study included function
definitions for moving average, momentum and trading range, permitting the
inclusion of technical indicators using these functions in the generated trading
systems. The grammar is outlined in Fig. 1, and includes the set of terminals (T),
non-terminals (NT), the start symbol (S), and the set of production rules (P).

In addition to the technical indicators the grammar also allows the use of
the binary operators f_and, f_or returning the minimum and maximum of
two arguments respectively, the standard arithmetic operators, the unary operator
f_not which returns 1-the argument, and the current day’s index value day. The
daily signals generated by the trading system are postprocessed using the rule in
Fig. 2.

The evolved system produced a buy, sell or ‘do nothing’ signal with trades
being left open for a pre-defined, fixed period of 10 days. The fitness function
was defined as trading profit less maximum drawdown in order to encourage the

N={<code>,<expr>,<fopbi>,<fopun>,<matbi>,<relbi>,<var>,<int>}
T={p,=,(,),f_and,f_or,f_not,+,-,*,>,<,>=,<=,scale,ma,day,1,2,3,4,5,10}
S=<code>
P={
<code> ::= p = <expr> ;

<expr> ::= <fopbi> (<expr>, <expr>) | <fopun> (<expr>)
| <expr><matbi><expr> | <expr><relbi><expr> | <var>

<fopbi> ::= f_and | f_or

<fopun> ::= f_not

<matbi> ::= + | - | *

<relbi> ::= > | < | >= | <=

<var> ::= <int> | day | ma(<int>,day) | momentum(<int>,day)
| trb(<int>,day)

<int> ::= 1 | 2 | 3 | 4 | 5 | 10
}

Fig. 1 Sample trading system grammar

Fig. 2 Postprocessing rules Buy = V alue < 0.33
DoNothing = 0.33 >= V alue < 0.66

Sell = 0.66 >= V alue
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generation of trading rules with monotonic equity curves. Allowance was made in
the calculation of fitness for both trading cost and slippage. Despite the simplicity of
the trading system specification, it outperformed a naive buy-and-hold benchmark
whilst maintaining a smaller ‘at risk’ average investment in the market. Follow
on studies extended the approach to encompass an extended range of technical
indicators [22] and an extended range of markets (DAX, ISEQ, Madrid stock
exchange and NIKKEI) [39, 69, 70].

In Dempsey et al. [46], a number of methodological improvements to the
canonical trading system of [68] were implemented. Instead of implementing a hard
‘all or nothing’ investment threshold, the trading system was allowed to invest a
variable amount depending on the strength of the generated trading signal. A variety
of population replacement strategies were also implemented in order to assess the
impact of varying these on system performance. Changing this parameter in the
GE implementation altered the importance of memory in the evolutionary process
by impacting on the speed of convergence of the population. The resulting trading
systems generated quite stable performance between in/out of sample periods and
outperformed the original system when tested on US market data. After taking
account of trade costs the system did not outperform a buy-and-hold benchmark
however.

When applying an evolutionary approach to generate trading rules it is important
to embed as much useful domain knowledge as possible in order to bias the
generation process towards syntactically correct, well-formed, trading rules. For
example, it would not be sensible to directly compare technical indicators of
differing types (consider a moving average value for price which could assume a
large or small value and a stochastic indicator which by definition is limited to values
between 0 and 100) in constructing a trading rule. Certain indicators are also only
validly parameterised within defined ranges. These issues require careful grammar
design and an exemplar of this is provided in the GE implementation of [32].

A key aspect of financial markets is that they are dynamic. Consequently, trading
systems need to be adaptive to changing conditions. In the early applications of GE
for financial trading, a fixed in sample training, out of sample testing, approach was
adopted. An obvious limitation of this approach is that trading rules will have a
‘shelf life’, with their performance deteriorating over time during the out of sample
period. This problem was addressed in Dempsey et al. [47], implementing a ‘live
trading’ system which updated its trading rules in real-time as new information
became available. An initial training period is set aside on which the population
of proto-trading rules is trained, with the aim that a competent population is evolved
after a certain number of generations, G. The system then goes ‘live’. The trading
system takes the best performing rule from the initial training period, and uses this
rule to trade for each of the following x days. After x days have elapsed, the training
window moves forward in the time series by x days, and the population is retrained
over the new data window for a number of generations g, where g < G. This embeds
both a memory and an adaptive potential in the trading system, as knowledge of
good past trading rules is not completely lost, rather it serves as a starting point for
their subsequent adaptation. The size of g is crucial. A small value of g means that
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memory is emphasised over adaptation, as the new data has relatively less chance to
influence the trading rules. This could be considered a tuning parameter that could
be used to alter the adaptive characteristics of the system. In [48] the performance
of an adaptive trading system based on the above approach was compared with
that of a system which is periodically retrained ab initio, with the adaptive system
demonstrating better results.

The bulk of trading systems using an EAP methodology have employed a
technical analysis approach to trading. One notable exception to this is provided
by Contreras et al. [40] who combine technical, fundamental and macro-economic
analysis in a hybrid, top-down, paradigm. Initially, prospective investments are
screened using macro-economic and corporate data, with the final invest decision
in selected companies being made based on technical analysis. GE is used to create
both the stock selection and trading rules respectively, thereby implementing a dual-
layer version of GE. The system is found to produce better results with lower
drawdown than benchmark systems including a GE approach which solely relies
on technical indicators as inputs [40, 41].

2.5 Intraday Data

High-frequency financial data corresponds to data that is sampled at small time
intervals (i.e., at high-frequency) during the trading day. Therefore, high-frequency
financial data, in the limit, can contain every single event on an order book during a
trading day. Traditionally, high-frequency data was difficult, and costly, to obtain so
most early research examining the application of various computational intelligence
techniques for trading used end of day data (i.e., a single data point for each trading
day).

The first application of GE to high-frequency financial data was that of Brabazon
et al. [25] which applied a technical analysis approach to price and volume data for
Ford and IBM, sampled on a 5-min frame. Each data vector included the opening
and closing prices, the high and low price, and the volume traded, for that 5-min
interval. All open positions were closed out before the end of each day, with no
inventory of stock being carried overnight.

In a complete implementation of a technical analysis trading system, the value
of technical indicators are used to determine when to enter and exit a trade (the
exit strategy can also incorporate a stop loss trigger in order to manage downside
risk). Earlier implementations of technical analysis trading systems usually adopted
a simpler design, such as having a fixed exit horizon with no stop loss trigger, and
therefore only in effect evolving an entry point.

In addition to evolving the entry strategy for investment, [25] also assessed the
performance of three different exit strategies namely, standard close, extended close
and stop-loss, take-profit close. In the standard close, the evolved systems automati-
cally close out trading positions 30 min after they are opened. In the extended close,
the system rechecks after 30 min whether the prediction is unchanged from the
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initial prediction, and if it is, the trade is extended for a further 30 min. In the stop-
loss, take-profit close, the position is initially held for 30 min, and thereafter, if the
position generates a loss of 0.1% it is closed immediately, and profit is automatically
taken on any position which makes a profit of 0.8% by closing the position once the
take-profit trigger is hit.

In both the training and test periods, the extended close exit strategy was found
to outperform the standard close strategy and the stop-loss, take-profit strategy, with
all three strategies significantly outperforming a buy and hold benchmark, albeit that
trading costs were ignored in this study. This highlights the impact that the choice
of exit strategy can have on the returns produced by a trading system.

Adamu and Phelps [2], building on earlier related work by the same authors
[1], take a more comprehensive approach, using GE to coevolve technical rules
for entry/exit (for both long and short positions) and also implements a stop loss
mechanism, using data based on 5-min bars, for a stock listed on the London stock
exchange. An earlier paper by Sax and Maringer [79] had employed a similarly
sophisticated approach in evolving trading strategies using GP on high-frequency
tick data of the USD/EUR exchange rate.

Other studies to evolve both entry and exit rules include that of Gabrielsson et
al. [52] which applied GE to develop a trading system for the S&P 500 E-mini
index futures contract. This future is traded on the CME. The system used a simple
moving average and a relative strength indicator. A moving window approach
was applied to train, validate and test the trading strategies in order to create a
method suitable for an online trading system. The authors noted the ease with
which domain knowledge could be incorporated into the grammar in order to evolve
targeted trading strategies, resulting in relatively transparent trading rules which
were capable of human interpretation.

One notable feature of the literature applying computational intelligence
approaches (including EAP methodologies) to develop trading systems is an
increasing integration between the fields of finance and computer science. In
particular, some recent contributions have exhibited a stronger input from the
domain of finance, drawing much more deeply on finance theory. A good exemplar
of this work is provided by Oesch and Maringer [66] which develops a high
frequency trading system using GE and applies this to NASDAQ limit order book
data (rebuild order book data). The trading system is motivated by a theoretical
liquidity asymmetry theorem from the market microstructure literature, with GE
being used to exploit volume inefficiencies at the bid-ask spread. GE evolves a
condition which describes volume distributions in the order book. If the condition is
violated, the system places a limit order on the side of the market where the volume
is too small, expecting the temporary price impact to be reversed. In this study,
attention is focussed on long-strategies only (i.e., the trading system aims to exploit
liquidity undersupply on the bid side of the market). The resulting system is found
to be able to generate profitable and robust strategies.
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2.6 Foreign Exchange Markets

The use of technical analysis for trading spot foreign exchange markets is also
common so an obvious extension of the early work applying GE for trading purposes
was to apply it to these markets. The initial pilot study Brabazon et al. [23] applied
the canonical approach of [22] to daily Daily US $—STG exchange rates for the
period 9/3/93 to 13/10/97. This work was extended to include the US $—DM
and US $—Yen exchange pairs with results indicating that the developed rules
earned positive returns in hold-out sample test periods after allowing for trading and
slippage costs [13, 17]. Subsequent studies focussing on foreign-exchange markets
include [79], already discussed above.

2.7 Sentiment Analysis

Traditionally, stock trading models only incorporated quantitative data, drawn from
the market, financial statements or macro-economic data. One source of information
which has attracted increasing attention as an input into trading models in recent
years is text data drawn from either internet message boards, social media or the
financial press.

While initial studies such as Thomas and Sycara [84] looked at raw message
count information, the next step was to consider the content or ‘sentiment’ of these
messages in order to assess whether investors are (un)favorably disposed towards
a stock. Sentiment analysis has become a major area of research covering natural
language processing, computational linguistics and text mining.

Using text data in quantitative models has been made easier by the commercial
availability of ‘tagged’ databases of financial news. One example of these is the Dow
Jones Elementised News Feed which places discrete pieces of news—keywords,
timestamps, symbols and other crucial data—into XML-tagged fields for easy
parsing and direct embedding into trading programs.

Larkin and Ryan [62] used a post-processed version of this data (where the stories
were classed as positive, negative or neutral, in essence a metric of market sentiment,
with respect to a particular market), combined with a GP methodology, to predict
intraday price jumps on the S&P 500 up to an hour before they occur. The results
indicated that the system was successfully able to predict stock price movement
using the news stories alone, without access to market price or volume data. Future
work using text data will doubtless seek to extract more detailed semantic meaning
from news stories as inputs to trading systems.
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2.8 Fitness Function Design

One of the critical decisions in applying GE, or indeed any EAP approach, to
trading system generation is the choice of fitness function. Poor choices will produce
poor trading systems. For example, selection of raw profit as a fitness metric is
quite likely to lead to the generation of trading systems with undesirable risk
characteristics, in terms of the variance or skewness of trading returns, as the simple
fitness metric contains no penalty against trading systems which produce volatile
returns [18, 31].

A trading strategy will generate a corresponding distribution of payoffs (returns)
if implemented repetitively, with the shape of the distribution depending on the
nature of the strategy. The first moment of the underlying probability density
function corresponds to the expected payoff to the strategy per trade with the higher
moments of the distribution (variance, skewness, and kurtosis etc.) describing how
payoffs vary around this value. In other words, the higher moments assess the risk
that returns may vary from expected.

In most implementations of EAP to trading system design, attention is focussed
on the first and second moments of the distribution (i.e., the mean and variance of
returns) with the aim being to maximise the former and minimise the latter. How-
ever, there are clear limitations to this approach. It implicitly assumes constant risk
aversion as it treats positive and negative outcomes symmetrically. Of course, the
design of the fitness function can be much more nuanced than merely maximising a
metric such as the Stirling ratio:

Return

Drawdown
(1)

and can be specified so as to bias the generated trading system towards systems with
a desired distribution of returns.

Another problem with traditional approaches to fitness function selection is that
risk metrics such as variance do not take account of the temporal ordering of
returns. A sequence of negative returns can lead to large drawdowns which can
have detrimental consequences if an individual investor or fund runs out of capital,
suggesting an important role for consideration of all aspects of the shape of the
produced equity curve in assessing trading systems.

Bradley et al. [31] examined the behavior of GE generated trading models
evolved using different choices of fitness functions, finding that these choices have
a very significant impact. This study forms a useful starting point for future work
concerning fitness function design.

One issue which impacts on all trading system induction methods is that of data
snooping. In essence, when a dataset is used multiple times for model selection an
apparently good model could occur due to chance alone rather than representing a
truly robust model of the data-generating process [89]. In these cases, the trading
system will likely perform poorly out of sample. Data snooping is a particular
concern in powerful methodologies such as EAP approaches due to the very large
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number of trading systems that can be generated and tested against the same dataset
during training.

Agapitos et al. [3] addressed this point, aiming to investigate the profitability
of evolved trading rules, having controlled for data-mining bias. The approach
taken implements a multi-criterion fitness function that in addition to a measure of
profitability, takes into account Hansen’s Superior Predictive Ability test, which can
directly quantify the effect of data-mining bias, by testing the performance of the
best mined rule in the context of the full universe of technical trading rules. Another
study addressing this issue, in the context of a for-ex trading system, is [80] which
constructs a framework for trading rule selection using a-priori robustness strategies,
where robustness is gauged on the basis of time-series bootstrap and multi-objective
criteria.

2.8.1 Trade Execution

As noted above, most academic contributions on trading systems omit detailed
consideration of implementation issues. In real-world trading, especially high-
frequency trading, careful attention must be paid to the structure of the market being
traded and the different ways in which investors can interact with this market.

2.9 Market Structure

Most large financial markets now operate as an electronic double auction limit order
book on which investors can post buy or sell orders at a specific, desired, price.
These orders are known as limit orders and are visible to market participants. Limit
orders can be cancelled at any time prior to their execution. Alternatively, an investor
may submit a market order which is executed immediately at current prices. The
choice between use of a limit or a market order depends on the sensitivity of the
investor to the probability of order execution versus the price paid.

As limit orders are visible when placed on the order book, investors wishing to
buy or sell a large quantity of stock will usually seek to manage the trade in order to
minimise its price impact. If an investor places a large ‘buy’ order, potential sellers
will mark up prices. An obvious strategy in response is to attempt to break up the
order into smaller pieces and push it out to the market a bit at a time. The potential
drawback of this is that the market may move against the buyer, hence design of an
execution strategy tries to balance market impact versus the risk of not filling the
order. An efficient trade execution strategy seeks to address the following:

• Timing—when should the order be placed and/or what interval of time should
there be between orders (what is the schedule?)

• Type—should the order be a market, limit, reserve, hidden order?
• Sizing—what size order should be sent to the market?
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• Pricing—at what price should the order be, aggressive or passive?
• Destination—there are many market destinations and types. Which one will

provide the best conditions of execution for the order?
• Management—if a limit order has been submitted, how should this order be

managed post submission?

A variety of fitness functions could be designed to drive the evolution of the
execution strategy but a common metric of trade execution performance is its
Volume Weighted Average Price (VWAP):

V WAP =
∑

(P rice · V olume)
∑

(V olume)
(2)

The VWAP of a strategy can be calculated and benchmarked against (for example)
the overall VWAP for that share during the period of the trading strategy’s execution.
The aim is to evolve a strategy which produces as competitive a VWAP as possible.

In essence, the VWAP for a defined time period (say a day) is calculated by
adding up the dollar value of every trade during the day, divided by the total shares
traded during the day. If the VWAP obtained by a trading strategy is better (i.e.,
lower for a purchase of an equity position) than the market VWAP over the same
period, the trade execution is considered to be good.

2.10 GE and Trade Execution

A novel approach was taken by Cui et al. [42, 43] where GE was used to evolve a
dynamic trade execution strategy, with the resulting rule adapting to changing mar-
ket conditions. Based on the finance literature analysing the relationship between
order placement and the information content of limit order books, six order book
metrics were selected as potential inputs for an execution strategy (Table 1).

The grammar adopted in our experiments is outlined in Fig. 3.

Table 1 Selected order book metrics

Variables Definitions

BidDepth Number of shares at the best bid

AskDepth Number of shares at the best ask

RelativeDepth Total number of shares at the best five ask prices divided by total
number of shares at the best five bid and ask prices

Spread Difference between the best bid price and best ask price

Volatility Standard deviation of the most recent 20 mid-quotes

PriceChange Number of positive price changes within the past 10 min divided
by the total number of quotes submitted within the past 10 min
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<lc> ::= if (<stamt>)
class = "CrossingSpread"

else
class = "NotCrossingSpread"

<stamt> ::= <cond1><op><cond2><op><cond3><op><cond4>
<op><cond5><op><cond6>

<op> ::= and | or
<cond1> ::= (BidDepth>AvgBidDepth) is <boolean>
<cond2> ::= (AskDepth>AvgAskDepth) is <boolean>
<cond3> ::= (RelativeDepth>AvgRelativeDepth) is <boolean>
<cond4> ::= (Spread>AvgSpread) is <boolean>
<cond5> ::= (Volatility>AvgVolatility) is <boolean>
<cond6> ::= (PriceChange>AvgPriceChange) is <boolean>
<boolean> ::= True | False

Fig. 3 Grammar used in trade execution studies of [42, 43]

if ( (BidDepth>AvgBidDepth) is True or (AskDepth>AvgAskDepth) is False
and (Spread>AvgSpread) is True ) class = "CrossingSpread"

else class = "NotCrossingSpread"

Fig. 4 Exemplar dynamic trade execution strategy

In the grammar, AvgBidDepth represents the average bid depth of the
market, AvgAskDepth represents the average ask depth of the market,
AvgRelativeDepth represents the average relative depth of the market,
AvgSpread represents the average spread of the market, AvgV olatility represents
the average volatility of the market and AvgP riceChange represents the average
price change of the market. The six financial variables are observed at the time of
order amendment. An example of an evolved dynamic strategy using three financial
variables is provided in Fig. 4.

In this strategy, if the market condition satisfies

(BidDepth>AvgBidDepth) is True and (Spread>AvgSpread)
is True

or satisfies

(AskDepth>AvgAskDepth) is False and (Spread>AvgSpread)
is True

the uncompleted limit order will be crossed over the bid-ask spread. Otherwise,
its limit price will be amended to the best price.

A practical issue arises in the assessment of potential execution strategies, in
that they cannot be easily backtested using historical data as it is very difficult to
assess the impact that an execution strategy would have produced ex ante. Apart
from this issue, another practical problem is that historical order book information
only represents a single sample path through time and hence, using this information
to estimate the likely future utility of any specific execution strategy is problematic.

In [42, 43] the training and evaluation of all trade execution strategies was
implemented in an artificial limit order market, simulated using an agent-based
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model, parameterised using data drawn from real-world financial markets. By
implementing an artificial stock market environment, it is possible to create a closed
world which allows the testing of new execution strategies over multiple runs,
potentially allowing us to develop robust execution strategies.

In the implementation, GE was found to be able to evolve quality trade execution
strategies and its results proved highly competitive against two basic benchmark
execution strategies. A detailed discussion of the application and the relevant
background finance literature is provided in [44].

There is notable scope for further research utilising GE for trade execution. One
obvious route is to widen the number of market variables which can be included in
the evolved execution strategies.

The above are not the only studies which have applied GE in an artificial stock
market setting. Whigham and Withanawasam [88] implemented a Maslov limit-
order model which can be parameterised to generate controlled cyclic behaviour
in the price signal. A trader, whose strategy is evolved via GE using a range
of technical indicators, interacts with this market and may place limit or market
orders. The objective of the study is to gain insight into the evolved trader
behaviour and discover how this alters with changes in the cyclic behaviour of
the market. Potentially such understanding could provide insights into how best
to generate trading strategies which need to generalise to a market with a range
of cyclic behaviours. In essence, the study uses the artificial stock market as a
tunable model in order to provide a closed environment for the testing of trading
strategies.

3 Credit Risk Modelling

The assessment of credit risk plays an important role in lending decisions. While the
precise nature of credit facilities can vary depending on the agreement between the
borrower and lender, in all cases lenders need to assess the capability of a borrower
to make both interest and capital repayments over the lifetime of the loan. The
decision as to whether to extend a loan and if so extended, its pricing, will depend
on this assessment of credit risk.

In the case of consumers, a credit risk model could consider factors such
as current income, age, occupation, current employment status, past borrowing
record and so on [87, 90]. Corporate risk models could include factors such as
data drawn from the financial statements of the firm, data drawn from financial
markets (such as share price), general macro-economic data, and non-financial firm-
specific information. The development of these risk assessment models requires
the discovery of suitable explanatory variables and model form, with model output
being a metric of credit/default risk.
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3.1 Bankruptcy Prediction

A closely related research topic is that of bankruptcy prediction where the objective
is to predict whether a firm will declare bankruptcy within a predetermined forecast
horizon. This is typically styled as a classification problem, the object being to
correctly predict the classification of a firm out of sample, as being solvent or
bankrupt. The pioneering study in this domain was that of Altman [6] in which five
accounting ratios were selected and then combined to produce a linear discriminant
classification model for corporate bankruptcy. A Z score was calculated for each
company with this value determining whether the company was classified as being
likely to go bankrupt or likely to remain solvent. The original Altman classifier had
the form:

Z=0.012X1+0.014X2+0.033X3+0.006X4+0.999X5

where:
X1 = working capital to total assets
X2 = retained earnings to total assets
X3 = earnings before interest and taxes to total assets
X4 = market value of equity to book value of total debt
X5 = sales to total assets
Subsequently, more sophisticated statistical approaches including logit and probit
regression [67, 94] were utilised. As the range of computational intelligence
techniques for classification have expanded, each new technique has been applied
in turn to credit scoring and corporate failure prediction with model induction
methodologies such as artificial neural networks and support vector machines
producing good results. A drawback of these approaches is that the resulting
classifiers are generally not human-readable which can preclude their use in practice
as some jurisdictions require lenders to justify decisions not to grant loans. Hence,
EAP methodologies can be useful.

The earliest application of GE for the purposes of corporate failure prediction
was O’Neill et al. [71] which explored the potential of GE to uncover rules
to assist in predicting corporate failure using information drawn from financial
statements of 178 publicly quoted US firms, drawn from the period 1991–2000.
Twenty two financial ratios, drawn from prior finance literature on corporate failure
prediction, were supplied as potential explanatory variables. In the initial study,
the grammar was restricted to generate linear classifiers. The results obtained were
competitive against other classification methods with good classification accuracies
being obtained out of sample. The best classifiers evolved for each period are
outlined in Fig. 5.

Although the evolved models were free to select from 22 potential explanatory
variables, it is notable that each model only employed a small subset of these. This
lends support to the proposition that many financial ratios have similar information
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One Year Prior to Failure:

Output = -3*Financial leverage -5*Return on Assets
+3*Inventory/Working Capital-20*Retained Earnings/Total Assets
+4*Total Liabilities/Total Assets

Two Years Prior to Failure:

Output = -2*Return on Assets+10*Sales/Total Assets-10*Fixed
Assets/Total Assets-2*varEBIT/Interest

Three Years Prior to Failure:

Output= -4*Return on Assets+20*Sales/ Total Assets-72.9*Cash from
Operations/Sales-10*EBIT/Interest

Fig. 5 Best evolved classifiers for one, two and three years prior to failure

Table 2 The accuracies
reported for each of the 3
years prior to failure based on
best evolved GE classifier

Years prior to failure In sample Out of sample

1 85.9% 80%

2 82.8% 80%

3 75.8% 70%

content and that classification accuracy is not enhanced through the construction of
models with a large number of these ratios.

The risk factors suggested by each model differ somewhat but contain plausible
findings. Examining the best classifier evolved for 1 year prior to failure suggests
that risk factors include low return on assets, low retained earnings and a high
ratio of total liabilities to total assets, which concords with financial intuition. Less
obviously, a high ratio of inventory to net liquid assets (inventory+receivables+cash-
payables) is also a risk factor, possibly resulting from depletion of cash or build-up
of inventories as failure approaches.

Risk factors for firms 2 years prior to failure include low return on assets and a
low ratio of earnings to interest costs. Less intuitive risk factors indicated are a low
ratio of fixed assets to total assets and a high ratio of sales to total assets. The former
could indicate firms with a lower safety cushion of saleable resources which could
be sold to stave off collapse, the latter could be serving as a proxy variable for firms
with rapid sales growth. Over-rapid sales growth can be a danger signal, indicating
that management resources are being spread too thinly.

Finally, risk factors indicated for firms at 3 years prior to failure include low
return on assets, a low ratio of profit to interest charge, a low level of cash generated
from operations and, as for T2, a high ratio of sales to total assets.

Hence, the evolved classifiers for each prediction horizon, indicate a clear
‘trajectory towards failure’, with low profits and high interest payments as a
percentage of profits being particular risk factors 2 and 3 years prior to failure, with
short-term liquidity issues arising as a key risk factor in the final year before a firm’s
demise (Table 2).
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A key assumption in the above study (and in all other literature on corporate
failure prediction) is that the selected financial ratios provide the optimal pre-
processing of raw numbers from the financial statements of corporates. The GE
methodology provides an easy way to address this issue as raw data drawn from the
financial statements can be provided as inputs instead of pre-processed financial
ratios, with the grammar allowing GE to create classifiers consisting of ‘self-
evolved’ ratios. This approach was adopted in [12]. In essence therefore, the human
domain knowledge that was supplied in [71] in the form of pre-selected financial
ratios, was omitted in this study.

The out of sample predictive accuracies obtained were similar to those in [71]
indicating that not alone could GE generate quality linear classifiers for the problem
at hand but it could also recover the domain knowledge embedded in the finance
literature concerning financial ratios with good information content for prediction
of bankruptcy. An expanded version of this study was subsequently presented in
[14]. Other relevant work is that of Alfaro-Cid et al. [4] which considers the issues
of unbalanced datasets, a particular feature of bankruptcy prediction modelling, as
the number of failing companies is typically relatively small in comparison with the
number of solvent companies.

While the above studies did not make use of non-financial information about
the firms, or general macro-economic data, it would not be difficult to extend the
approach to include such information.

3.2 Bond Rating Prediction

When large corporates wish to raise debt which is tradable on a recognised financial
market, they need to obtain a bond rating from an independent rating firm such
as Standard & Poor’s (S&P) or Moody’s. The bond rating firms undertake an
assessment of either the proposed lender’s general credit-worthiness (an issuer
credit rating) or an assessment of the credit-worthiness of a specific bond issue
they propose to make (a bond issue credit rating). Therefore the ratings serve as
a surrogate measure of the risk of non-payment of interest or capital. These ratings
impact on the borrowing cost and the marketability of issued bonds.

The ratings are revised periodically as the circumstances of the borrower change.
Being able to anticipate bond rating changes could potentially provide a useful input
into a stock or bond trading model. It would also provide useful information for
pricing of credit-risk derivatives concerning that borrower.

Following some initial work in the 1960s, there was increased research interest in
attempting to predict corporate bond ratings from the 1980s [50, 51, 53]. In common
with corporate failure prediction a feature of bond rating prediction is that there
is no unambiguous theoretical framework for guiding the choice of explanatory
variables, or model form. Rating agencies assert that their credit rating process
involves consideration of both financial and non-financial information about the firm
and its industry, but the precise factors utilised, and the related weighting of these
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factors, are not publicly disclosed by the agencies. In the absence of an underlying
theory, most published work on bond rating prediction employs a data-inductive
modelling approach, using firm-specific financial data as explanatory variables, in
an attempt to recover the model used by the rating agencies. This produces a high-
dimensional combinatorial problem.

The initial application of GE to bond rating prediction focussed on issuer-credit
ratings and aimed to predict whether a rating would fall into investment-grade or
junk category Brabazon and O’Neill [15], followed by Brabazon and O’Neill [16,
19]. Financial data, and the associated Standard & Poor’s issuer-credit ratings of
600 public US firms, drawn from the years 1999/2000 were used to train and test
the model.

The best developed model was found to be able to discriminate in-sample (out-of-
sample) between investment-grade and junk bond ratings with an average accuracy
of 87.59 (84.92)% across a fivefold cross validation, producing very similar results
to a Multi-Layer Perceptrons (MLP) applied to the same data. In contrast to the
MLP models, the GE classification model was reasonably compact and produced a
human-readable classification rule which concorded with domain knowledge. Given
that GE was restricted to evolve linear classification rules, the comparability of its
results with those from application of an MLP would indicate that the relationships
between financial data and resulting bond ratings are not, in fact, highly non-linear.

3.3 Other Related Problems in Finance

There are several other areas of research in finance which seek to predict a corporate
outcome using financial and other information about a firm and its industry. A
significant stream of work involves the prediction of targets for merger or takeover.
Obviously, being able to accurately predict which firms may be a target in advance
of the market generally, could provide useful trading information. A wide a variety
of methodologies have been applied in an attempt to forecast takeover and merger
targets, including univariate analysis [76], Multivariate Discriminant Analysis
(MDA) [7, 82], probit/logit analysis [63, 75], MLPs [33] and self-organising
maps [56].

Another related stream of work is the prediction of an auditor’s ‘going-concern’
qualification of the financial statements of a company. As this qualification states
that the auditor does not believe that the company will continue in existence, the
issuing of such a qualification will typically have a major impact on the decisions
of investors, bank lenders, creditors and employees. When an entity receives a
going concern qualification they will usually suffer serious repercussions including
restrictions on trade credit, constraints on the raising of further finance/capital, and
the possibility of a share price collapse. This domain has attracted research attention
over the past three decades. A wide variety of methodologies have been applied in an
attempt to predict going concern qualification including univariate analysis, Linear
Discriminant Analysis (LDA) [65], logit [9], probit [49] and MLPs [85]. Most
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studies have relied heavily on the use of company accounting data as modelling
inputs. As yet, GE has not been applied to either of these areas.

4 Other Finance and Economics Applications of GE

Over the years, GE has been introduced to a variety of application areas in finance
and economics outside of the areas already discussed in this chapter. In this section
we briefly overview a few of these.

4.1 Supply Chain Management

Supply chain management concerns the management of the flow of goods and
services from point of origin to point of consumption. It encompasses flows
of raw materials, work-in-process, and finished goods. Efficient and effective
management of these flows is crucial in order to ensure the requisite availability
of products/services to each customer as needed, and in order to control the costs
of the supply chain as a whole. Modern supply chains can be very complex ranging
over multiple countries and encompassing many different organisations.

A particular challenge in managing supply chains is that unexpected events can
occur such as unanticipated changes in final customer demand, unexpected events
in production systems (for example, closure of a factory), or changes in legislation
impacting on the flow of some product. Such unexpected events can result in a
‘bullwhip effect’ with the initial impact being magnified at other stages in the supply
chain, producing inefficiencies and high costs. In the worst-case scenario, customer
service declines, lead-times increase, sales are lost, costs go up and capacity is
adjusted [73]. A common example of the bullwhip effect is where orders to a
supplier in the supply chain have a larger variance than sales to the buyer in the
same supply chain, referred to as demand distortion. This can occur when suppliers
do not have good information on final sales and over-respond to small fluctuations
in these.

A traditional problem in supply chain management is to derive the optimal
ordering policy for an individual firm, given the information available to it. Many
approaches have been taken in the literature to derivation of this policy with
Phelan and McGarraghy [73] novelly applying GE in an attempt to derive an
optimal ordering policy for agents in a multi-tier supply chain. In this study, GE
is implemented in a simulation environment where artificial agents are playing the
Beer Game [81]. In this game, shipments arrive from upstream players, orders arrive
from downstream players, orders are filled and shipped where possible, affecting the
inventory and backorders of a player, the player in each step of the game (i.e., each
time period) decides how much to order to replenish their inventory, and finally
inventory holding costs and backorder costs are calculated for each player every
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week [73]. Different scenarios can be generated, depending on whether the final
demand from customers is deterministic or stochastic. The GE grammar is defined
so as to allow the generation of a valid ordering policy and the costs of a specific
policy can be estimated by running a simulation of final demands and actions of each
agent in the supply chain. The results indicated that GE was capable of producing
effective ordering policies. Developments on this initial study are discussed in [72]
and [74].

4.2 Tax Non-Compliance Detection

The setting of tax evasion can be considered as a co-evolutionary arms race in which
the tax evader is attempting to outwit the rules as enforced by the tax authority.
The latter is attempting to catch evaders via tax audits and to close off loopholes
in tax regulation. A novel application of GE was implemented by Hemberg et al.
[54] in the simulation modelling of this setting. In the study, a search heuristic
called STEALTH is implemented that can simulate the co-evolution of abusive tax
avoidance schemes and audit scores, where GE is applied to generate a series of
transactions for the purposes of this simulation. The system has potential use in
guiding policy formulation as it allows the exploration of the likely forms of (new)
tax schemes in response to changes in audit policies of tax authorities. Obviously,
if policy makers can anticipate potentially abusive tax avoidance schemes, they
can implement novel audit procedures in order to counteract them. The developed
system is quite complex and fuller details are provided in [55] and [77]. On a broader
level, this work provides another exemplar of the application of GE in an agent-
based setting.

4.3 Corporate Strategy

An enduring research question is whether organisational strategy matters in terms
of explaining corporate performance, and if so, how much does it matter. While
it appears self-evident at first glance that corporate decisions regarding firm scope
and resource allocation would affect firm performance, the empirical evidence is
not so clear cut, with studies of the performance of diversification and retrenchment
strategies producing varying results [10, 83]. The strategy domain is characterised
by a lack of strong theoretical frameworks. It is also notable that unlike areas such
as financial market prediction, there have been virtually no applications of EAP
methodologies to questions in the strategy domain.

Brabazon et al. [24] introduced GE to this domain, modelling the relationship
between corporate strategy and shareholder wealth. A shareholder perspective is
adopted in the study and it is assumed that the success of corporate strategy
decisions is judged by equity markets. To allow for exogenous factors which
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could impact on stock market values generally, a relative performance metric, a
market-value-added (MVA) rank is utilised. MVA is defined as: Market Value
of Firm—Original Value of Capital Invested. The performance of the firm is
determined by whether it improved its MVA ranking in the Stern-Stewart 1000
listing (published in Fortune magazine) over a 4 year period.

A total of 430 US firms were selected from the Stern-Stewart Performance 1000
list for the study and sixteen potential explanatory variables, which can proxy
strategic intent [83], drawn from their financial statements are collected from the
Compustat database for each firm. The best classifier correctly categorised the
direction of performance ranking change in 66% of the firms in the training set
and 65% in the out-of-sample validation set providing support for a hypothesis that
changes in corporate strategy are linked to changes in corporate performance. A
detailed discussion of the results and the form of the evolved classifiers can be found
in [24]. Scope exists to further extend the application of GE into this domain beyond
this pilot study.

5 The Future

GE has found a variety of applications in finance and economics since its intro-
duction in 1998. It is notable that the sophistication of the studies employing the
methodology has increased over the years moving from initial proof of concept
studies to much more robust, industry-strength, applications. This process has been
facilitated by the dissemination of knowledge about GE beyond computer science
to include domain experts from finance and economics. A key selling point for
many finance academics and practitioners concerning GE is its ability to encapsulate
domain knowledge in the grammar. This helps reassure users that the resulting
models are plausible. Hence, the areas with greatest potential for the application
of GE are those where we have good data concerning the phenomenon of interest
but only a partial understanding of how this data might fit together.

Financial trading will continue to be an important area of application for
GE given its natural fit with this application. We can expect to see increasing
sophistication in these application with fuller implementation of smart entry and
exit strategies, and greater attention being paid to market structure. There is also
substantial opportunity to undertake work concerning the design of appropriate
fitness functions for trading applications. We can expect to see greater integration
of non-financial information, such as that from social media or official news wires
into trading systems.

The range of financial instruments traded on markets has expanded enormously
over the past 20 years, moving far beyond the trading of shares and debt instruments
to encompass a wide variety of financial derivatives. A key issue for investors wish-
ing to trade in derivatives for speculative or hedging purposes is the determination of
a fair price for the derivative. While GP has been applied for the purposes of reverse-
engineering pricing models ([36, 38, 58, 91, 93] is a sampling of this work) and to
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develop hedging strategies [92], the relative ease with which domain knowledge
and user-preferred bias in the structure of output models, can be incorporated into a
grammar in GE makes these promising areas for future work.

Another area with significant potential for the application of GE is that of agent-
based modelling (ABM). Although there have already been a number of studies
applying GE in an ABM framework ([42–44, 54, 55, 88] being a sampling of these),
it is perhaps surprising that GE has not gained greater traction as a tool for ABM.
The nature of GE makes it particularly amenable for application in ABM as it is
relatively easy for modellers to place a desired structure via the grammar definition
on the strategies that agents can employ, while still allowing considerable room
for agents to adapt their strategies. In addition to modelling of agents in financial
markets, there are a multiplicity of opportunities for policy-focussed research via
application of a GE methodology to ABM in economics.

The application of GE to finance and economics is nearly ‘fiche bliain ag fás’.1

It will be fascinating to see the continued development of this work over the next 20
years.
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Synthesis of Parallel Programs on
Multi-Cores
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Abstract Multi-cores offer higher processing power than single core processors.
However, as the number of cores available on a single processor increases,
efficiently programming them becomes increasingly more complex, often to the
point where the limiting factor in speeding up tasks is the software.

We present Grammatical Automatic Parallel Programming (GAPP), a system
that synthesizes parallel code on multi-cores using OpenMP parallelization prim-
itives in problem-specific grammars. As a result, GAPP obviates the need for
programmers to think parallel while still letting them produce parallel code.

The performance of GAPP on a number of difficult proof of concept benchmarks
informs further optimization of both the design of grammars and fitness function to
extract further parallelism. We demonstrate an improved performance of evolving
programs with controlled degree of parallelism. These programs adapt to the number
of cores on which they are scheduled to execute.

1 Introduction

As the multi-core processors become the norm, researchers fabricate thousands of
cores on a single chip [6, 28, 32]. As the number of cores on a chip increase,
efficiently programming them becomes increasingly complex, often to the point
where the limiting factor in speeding up tasks is the software. Contrarily, high
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performance computing developers [37, 46, 49] have identified that the software
is trailing behind the rise of multi-cores. The inability of sequential software to
scale with multi-cores initiates the necessity for the programmers to write parallel
programs that exploit multi-cores.

Parallel programming APIs such as MPI [30] and OpenMP [26] help in
exploiting the higher processing power of multi-cores. OpenMP exploits processing
power on the shared memory architectures. Writing parallel programs using either
of the above two standards is challenging compared to sequential programming [41].
Challenges include identifying the available parallelism, configuring the shared
data, use of locks for mutual exclusion in order to guarantee correctness of the code,
synchronizing and balancing the workload among multiple processors.

Alternatively, automatic parallelization, transforms a sequential program into
a semantically equivalent parallel code. Some automatic parallelization compilers
include Polaris [8], SUIF [5], and Vienna Fortran Compiler [7]. Automatic paral-
lelization is still difficult, where the burden moves from the software developer to
a compiler engineer. Later, engineers’ efforts were augmented and in some cases
replaced with machine learning [53]. Clearly, we need better tools to fully exploit
the multi-cores.

We introduce an automatic parallel programming tool, Grammatical Automatic
Parallel Programming (GAPP) to reduce the gap between traditional parallel
programming and the human difficulties. GAPP combines Grammatical Evolution
(GE) together with the design of parallel context-free grammars (CFGs). GAPP
predominantly addresses the parallel programming concerns on shared memory
architectures thereby, we use OpenMP parallelization constructs in order to guar-
antee parallelism. OpenMP primitives are an integral part of the grammars, GE
together with these primitives creates a feasible solution space of parallel programs.

We examine GAPP in synthesizing parallel programs in both recursion and
iterative sorting domains. We study the performance, measured in terms of speed-up
and the amount of effort required to synthesize, measured in terms of the number of
generations. The results indicate that GAPP generates correct and efficient parallel
programs. We extend GAPP, and as a result we witness a slight improvement
in the performance of the resultant parallel programs. At this stage, as a result
of the improvements, we encounter a peculiar behaviour in the execution of the
synthesized parallel programs. This characteristic behaviour is different in both the
problem domains, where recursive parallel programs exhibit excessive parallelism
while iterative sorting programs suffer with the concept of false sharing. In order
to address these challenges, we further extend GAPP—slightly modify the design
of the grammars. The enhancements resolve these hurdles while improving the
performance of the synthesized parallel programs.

We organize the rest of the paper as follows: Sect. 2 describes the existing
work; Sect. 3 describes GAPP on both the problem domains; Sect. 4 presents the
experimental parameters; Sect. 5 demonstrates the experimental results; and Sect. 6
analyses and extends GAPP; finally, Sect. 7 concludes.
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2 Related Research

2.1 Evolutionary Techniques for Recursion

Some of the earliest work on evolving recursion is from Koza [36, Chapter-
18] which evolved a Fibonacci sequence; this work cached previously computed
recursive calls for efficiency. Brave [10] used Automatically Defined Functions
(ADFs) to evolve recursive tree search. In this, recursion terminated upon reaching
the tree depth. Then, [55] concluded that infinite recursions was a major obstacle
to evolve recursive programs. However, Wong and Mun [57] successfully used
an adaptive grammar to evolve recursive programs; the grammar adjusted the
production rule weights in evolving solutions.

Spector et al. [48] evolved recursive programs using PushGP by explicitly

manipulating its execution stack. The evolved programs were of O
(
n2

)
complexity,

which became O
(
nlog(n)

)
with an efficiency component in fitness evaluation.

Recently, Moraglio et al. [38] used a non-recursive scaffolding method to evolve
recursive programs with a CFG based GP. Recently, Agapitos et al. [4] presented a
review of GP for recursion.

2.2 Evolutionary Techniques for Sorting

In evolving sorting networks, Hillis [31] evolved a minimal 16-input network for
the sorting network problem. O’Reilly and Oppacher [44] initially failed to evolve
sorting with genetic programming (GP); however, they succeeded in [45] with a
swap primitive. Later, Kinnear [33, 34] generated a bubble sort by swapping the
disordered adjacent elements. Abbott [1] used Object Oriented Genetic Program-
ming (OOGP) for insertion and bubble sorts. Spector et al., [48] used PushGP for

recursive sorting that had an O
(
n2

)
complexity and enhanced to O

(
nlog(n)

)
by

adding efficiency.
Recently, Agapitos and Lucas [2, 3] evolved efficient recursive quicksort using

OOGP in Java. The evolved programs were of O
(
nlogn

)
complexity. Then, O’Neill

et al. [43] applied GE for program synthesis by evolving an iterative bubble sort

in Python; the evolved programs had quadratic O
(
n2

)
complexity. Most of these

attempts belong to quadratic complexity O
(
n2

)
, while the attempts in [2, 48]

belongs to O
(
nlogn

)
.
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2.3 Automatic Evolution of Parallel Programs

In general, automatic generation of parallel programs can be divided into two types:
auto-parallelization of serial code and the generation of native parallel code.

Auto-parallelization requires a serial program. Using GP, [47, Chapter-5] pro-
posed Paragen which had initial success, however, the execution of candidate
solutions for fitness evaluation ran into difficulties with complex and time con-
suming loops. Later, Paragen-II [47, Chapter-7] dealt with loop inter-dependencies
relying on a rough estimate of time. Then, [47] extended Paragen-II to merge
independent tasks of loops.

Similarly, genetic algorithms evolved transformations; [40] and [56] proposed
GAPS (Genetic Algorithm Parallelization System) and Revolver respectively. GAPS
evolved sequence restructuring, while Revolver transformed the loops and pro-
grams, both optimized the execution time. On the other hand, native parallel
code generation produces a working program that is also parallel. With multi-
tree GP, [51] concurrently executed autonomous agents for automatic design of
controllers.

Unlike PARAGEN-II [47], GAPP does not utilize dependency analysis; instead,
GE works the data interdependencies out by selecting pragmas that guarantee
program correctness. Recently, Chennupati et al., [15, 17] evolved natively parallel
regression programs. Thereafter, MCGE-II in [20] evolved task parallel recursive
programs. The minimal execution time of the synthesized programs was merely
due to the presence of OpenMP pragmas which automatically map threads to cores.
However, use of a different OpenMP pragma alters the performance of a parallel
program, and skilled parallel programmers carefully choose the pragmas when
writing code. To that end, in this paper, we extend MCGE-II in two ways: we
re-structure the grammars so task and data level parallelism is separate, and we
explicitly penalize long executions.

3 Grammatical Automatic Parallel Programming

Grammatical Automatic Parallel Programming (GAPP) presents the first instance of
using grammars for the task of automatic parallel programming. GAPP provides an
alternative to the craftsman approach of parallel programming. This is significantly
different from other parallel EC approaches, because not only do we produce
individuals that, in their final form, can exploit parallel architectures, we also exploit
the same parallel architecture during evolution to reduce the execution time.

Figure 1 presents an overview of GAPP that operates on a string of codons which
separate the search and the solution spaces. Like any application of GE, GAPP uses
the typical search process, genetic operations and genotype-phenotype mapping.
However, the major contribution of GAPP is the design of grammars that produce
parallel programs, in which, OpenMP primitives are an integral part of the grammars
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Fig. 1 An overview of GAPP parallel program synthesis

and creates a feasible solution space of parallel programs. The GE search process
helps to find the [near] optimal parallel programs in that space. These programs are
evaluated on a number of fitness cases such that the best among them is identified as
a parallel program. We now discuss the parallelization strategy of the end programs.

3.1 GAPP for Parallel Recursion

GAPP relies on the grammars designed to produce parallel recursive programs [20].
We discuss the design of parallel recursive grammars for Fibonacci.

OpenMP Pragmas OpenMP is a portable, scalable, directive based specification
to write parallel programs on shared memory systems. It consists of compiler
directives, environment variables and run time libraries that are used to designate
parallelism in C/C++ and Fortran. These directives are special preprocessor instruc-
tions termed as pragmas that follow the fork-join parallelism.

Some OpenMP pragmas are—parallel for is a loop construct that dis-
tributes the iterations of a loop among the threads. The use of a parallel for construct
is limited to a for loop that has defined boundaries, that is a loop with a terminating
condition. Another pragma, parallel sections defines a parallel region, in
which, each task is handled independently. If there are more number of threads than
the independent blocks, the remaining threads will be idle, otherwise, all the threads
execute multiple code blocks. parallel task is another work-sharing pragma
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that works similar to section construct. Notice that the use of omp task is not
optional. A detailed description of OpenMP API can be found in [12].

Design of Grammars Figure 2 presents GAPP grammars for the synthesis of
Fibonacci program. The program begins at <program>, which derives the symbols
<condition> and <parcode>. The symbols <omptask> and <ompdata>
represent the task and data parallel pragmas, while <omppragma> selects one of
the two options, therefore, a clear separation between task and data parallelism. This
helps to accelerates the evolution of solutions because of the grammatical bias [54].
This design constrains the search to explore data or task parallel space rather both
spaces.

The grammar has shared (<shared>) and private (<private>) clauses. The
input (<input>) and two variables (temp, res) are shared among the threads. Input
represents the nth Fibonacci number, while variable res returns the result of parallel
execution. The local variables (temp, a) store the auxiliary results of recursive calls.

The variable “a” is thread private. OpenMP has private (<private>) clauses:
private(a) makes a variable thread-specific, such that any changes on the
variable are invisible outside the parallel region; firstprivate(a) maintains a
constant value throughout the program; lastprivate(a) keeps the changes of
last thread in the parallel region. Evolution selects one of the three private clauses
depending on the problem.

The non-terminal <parblocks> produces parallel code blocks that are mapped
through <blocks>. The non-terminal <blocks> generates a sequence of parallel
blocks with each block containing an independent recursive call. The parallel code
blocks ensure task level parallel execution. The non-terminal <stmt> depicts the
recursive call of the Fibonacci program, while the symbols <bop> and <lop> refer
to the binary arithmetic and logical operators respectively. The symbol <const>
maps to integer constants. The base case is generated from the input variable, logical
operators and constants generating non-terminals: <line1> and <line2>. The
non-terminal <expr>, expresses the recursive calls, that is called in <parcode>
and <blocks>.

Performance Optimization We encourage parallelism with the inclusion of exe-
cution time in the fitness function. The run time exerts external selection pressure,
which helps in selecting an appropriate parallelization primitive. Therefore, the
fitness function is a product of two factors: execution time and the mean absolute
error, both are normalized in the range [0, 1]—a maximization function. The
following equation computes the fitness of evolving parallel recursive program
(frprog):

frprog = 1
(
1+ t

) ∗ 1
(

1+ 1

N

N∑

i=1

∣
∣yi − ŷi

∣
∣
) (1)
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〈program〉 ::= 〈condition〉 〈parcode〉

〈ompdata〉 ::= #pragma omp parallel | #pragma omp single
| #pragma omp parallel for

〈omptask〉 ::= #pragma omp parallel sections | #pragma omp task

〈shared〉 ::= shared(〈input〉,temp,res) 〈nl〉 {

〈private〉 ::= private(a) | firstprivate(a) | lastprivate(a)

〈condition〉 ::= if(〈input〉〈lop〉〈const〉) { 〈nl〉 〈line1〉; 〈nl〉〈line2〉; 〈nl〉 }

〈parcode〉 ::= else{〈nl〉〈omppragma〉〈private〉〈shared〉 〈blocks〉〈nl〉 } 〈nl〉 } 〈nl〉
〈result〉

〈omppragma〉 ::= 〈ompdata〉 | 〈omptask〉

〈blocks〉 ::= 〈parblocks〉 | 〈blocks〉〈nl〉〈blocks〉

〈parblocks〉 ::= 〈secblocks〉 | 〈taskblocks〉

〈secblocks〉 ::= #pragma omp section 〈nl〉 { 〈nl〉〈line1〉; 〈nl〉 〈atomic〉 〈nl〉 〈line2〉
〈bop〉 a; 〈nl〉 }

〈taskblocks〉 ::= #pragma omp task 〈nl〉 { 〈nl〉 〈line1〉;〈nl〉 〈atomic〉〈line2〉 〈bop〉 a;
〈nl〉 }

〈atomic〉 ::= #pragma omp atomic

〈line1〉 ::= temp = 〈expr〉 | a = 〈expr〉;

〈line2〉 ::= res 〈bop〉= temp

〈expr〉 ::= 〈input〉 | 〈stmt〉 | 〈stmt〉〈bop〉〈stmt〉

〈result〉 ::= return res; 〈input〉 ::= n 〈nl〉 ::= \n

〈stmt〉 ::= fib(〈input〉 〈bop〉 〈const〉);

〈lop〉 ::= ‘>=’ | ‘<=’ | ‘<’ | ‘>’

〈bop〉 ::= + | - | * | /

〈const〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Fig. 2 Design of GAPP grammar to synthesize parallel recursive Fibonacci programs
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where, t is the execution time of a program; yi and ŷi are the actual and evolved
outputs respectively. The choice of an OpenMP pragma can significantly impact
the execution time of a program. The presence of an incorrect pragma in the end
program will have an adverse effect on fitness evaluation. In limiting such effects,
the first term, normalized execution time in Eq. (1) helps to select the correct pragma.
That is, the changes in time component influence the performance of resultant
programs, whereby, those with minimum execution time become the best parallel
programs. Meanwhile, the second term, normalized mean absolute error enforces
program correctness. Together, the twin objectives push for a correct and efficient
parallel program.

3.2 GAPP for Parallel Iterative Sorting

Design of Grammars We describe the design of grammars for the synthesis of
parallel odd-even sort programs [21]. Similar to recursive grammars, Odd-Even
sort grammars are in [13, Appendix B]. The generation of an end program starts
with <program> symbol, which derives to <for_out> and <condition>
symbols. The non-terminal <for_out> maps to an outer “for loop”. Note that
GE fails to generate correct loop structures [43], hence, we preserve the loops in
synthesizing the iterative sorts. The non-terminal <condition> derives problem
specific base/termination conditions.

The symbols <schedule> and <type> derive the type of scheduling strategy.
In scheduling a parallel for loop, OpenMP offers three clauses: static, dynamic
and, guided; static divides the work among threads before the loop execution
and dynamic allocates the work during the execution. The third type, guided,
divides work in the execution but the allocation begins with the given chunk size
(CHUNK) and decreases.

We include the mechanism of swapping the adjacent elements in two phases (odd
and even). The input, index (<index>), and the size of the array are shared among
all the cores. The temporary variable (temp in <index>) is private to the thread.
We use absolute values (abs in <for_in_line> and <swap>) to avoid negative
indexes.

Performance Optimization As with recursion (Eq. (1)), the time in fitness evalua-
tion of parallel iterative sorting helps to choose an appropriate pragma. The accuracy
is defined as mean inversions. For example, if a1a2a3. . . an is a permutation of the
set 1, 2,. . . , n then the pair (ai, aj ) is an inversion of the permutation iff i < j and
ai > aj [35]. The fitness function (fsprog) is shown in Eq. (2).
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fpprog = 1
(
1+ t

) ∗ 1

(

1+

N∑

i=1
n
(
I (Ai)

)

T P

)

(2)

where, t stands for the execution time of the evolved parallel program over all the
fitness cases (N); n

(
I (Ai)

)
is the number of inversions in the ith array (Ai ; total, N

arrays); and T P is the total number of pairs in all the fitness cases (N ).

4 Experiments

We evaluate GAPP on six recursive and four iterative sorting benchmark problems.
Table 1 presents all the benchmarks with their properties. Of the six recursive
problems: first three (Sum-of-N, Factorial, Fibonacci) accept a positive integer as
input; for Sum-of-N, it is randomly generated from the range [1, 1000] while, for
Factorial and Fibonacci problems, it is in the range [1, 60] due to the limitations
of data types in C; the remaining three problems (Binary-Sum, Reverse, Quicksort)
accept an array of integers with their start and end indexes as input, for which, an
array of 1000 elements are randomly generated from the range [1, 1000]. For the
four iterative sorting benchmarks, 100 training cases with each array containing
1000 elements are randomly generated from the range [1, 1000]. The end programs
of these four benchmarks use conditional (if ), iterative (for) and variable indexing
structures.

Table 1 Summary of both the recursive and iterative sorting benchmarks under investigation with
their properties used in the experiments

Type Local

# Problem Input Return variables Range

Recursion

1 Sum-of-N int int 3 [1,1000]

2 Factorial int unsigned long long 3 [1,60]

3 Fibonacci int unsigned long long 3 [1,60]

4 Binary-Sum int [ ], int, int int 2 [1,1000]

5 Reverse int [ ], int, int void 2 [1,1000]

6 Quicksort int [ ], int, int void 3 [1,1000]

Iterative sorting

1 Bubble sort int [ ], int void 4 [1:1000]

2 Quick sort int [ ], int, int void 5 [1:1000]

3 Odd-Even sort int[ ], int void 4 [1:1000]

4 Rank sort int [ ], int void 4 [1:1000]
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Table 2 Parameters and experimental environment

GE parameters Experimental environment

Point mutation 0.1 CPU Intel (R) Xeon (R) E7-4820,

One point crossover 0.9 16 cores

Selection Roulette Wheel OS Debian Linux v 2.6.32, 64-bit

Replacement strategy Steady state C++ GNU GCC v 4.4.5

Initialization Sensible libGE [39] v 0.26

Depth {9, 25} OpenMP libgomp v 3.0

Wrapping Disabled Timer utility omp_get_wtime()

Population 500

Generations, runs {100, 50}

Table 2 describes the algorithmic and hardware parameters. The grammars are
general enough except for a few minor changes with respect to the problem at hand.

Generality of Grammars Grammars for the benchmarks Fibonacci (Fig. 2) and
Odd-Even sort represent both the experimental domains. The grammars for other
benchmarks are 90% similar, where all of them have common OpenMP pragmas
while they differ in some domain specific knowledge. Grammars for all the
benchmarks are presented in [13, Appendix B]. We evolve programs in C; however,
GAPP is general enough to apply to the programming languages that offer OpenMP
like parallelism. JOMP [11] is an OpenMP API for JAVA and can synthesize parallel
programs in JAVA.

4.1 GAPP Variants

With the two different features (design of grammars and performance optimization)
of GAPP, we study their influence in the synthesizability and fitness evaluation
of the parallel programs. The study contains four GAPP variations: first variant,
named as GAPP (Unoptimized), does not use both the separation of task and data
parallel primitives as well as the time component of performance optimization
(shown in Eqs. (1) and (2)). Second variant, named as GAPP (Grammar), uses the
design of grammars with parallel primitives and does not use the time component
of performance optimization. Third variant, GAPP (Time), neglects the separation
of task and data parallel primitives, but uses the time in performance optimization.
Finally, the fourth variant, GAPP (Combined), uses both the design of grammars
and the performance optimization.
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5 Results

We present experimental results of GAPP for both recursion and iterative sorting
domains. The results report two measures: speed-up and mean best generation
(MBG), where the speed-up informs performance of the synthesized parallel
programs while MBG shows the time taken to synthesize a best of run program
in terms of generations.

Speed-Up The speed-up is defined as the ratio of mean best execution time (MBT)
of synthesizing parallel programs on 1-core to n-cores and is shown in Eq. (3):

Speed-up = TMBT−1−core

TMBT−n−cores

(3)

where, TMBT−1−core is the mean best execution time on a single core, while
TMBT−n−cores is that of n-cores of a processor. Mean best execution time (MBT)
is defined as the mean of all the execution times of the average best-of-generation
programs across all the experimental runs of GAPP, and is given as shown in Eq. (4):

TMBT =
∑R

r=1
∑G

g=1 Tbprog(g)

R ×G
(4)

where Tbprog(g) is the execution time of the best program in a given generation g,
G is the number of generations, r is a run, and R is the number of runs.

Mean Best Generation (MBG) Mean best generation (MBG) is defined as the
number of generations required to converge to the best fitness, with a pre-condition
that the program under consideration must be correct, averaged across R runs. MBG
helps to investigate the effect of restructuring grammars on the synthesizability (ease
of evolving) of the correct parallel programs.

5.1 Recursion

Figure 3 presents the speed-up of each of the four GAPP (Unoptimized, Grammar,
Time, Combined) variants at different cores for all the six recursive benchmarks.
The results indicate that the performance of GAPP improves as the number of cores
increase. Non-parametric Friedman tests [27] are used to show the significance of
these results.

Table 3 shows the non-parametric Friedman tests with Hommel’s post-hoc [29]
analysis on the speed-up of GAPP for recursive problems at α = 0.05. The first
column shows the number of cores. The second column shows the GAPP variant,
while the third column presents the average rank. The fourth and the fifth columns
show the p-value and p-Hommel. The lowest average rank shows the best (GAPP
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Fig. 3 The speed-up of GAPP (Unoptimized, Grammar, Time, Combined) variants for all the six
experimental problems. The number of cores vary as 2, 4, 8 and 16. The horizontal dashed (- -)
line represents the speed-up of 1 and acts as a reference for the remaining results
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Table 3 Friedman statistical
tests with Hommel’s post-hoc
analysis on speed-up of all
the four GAPP variants

Cores GAPP variant Average p-Value p-Hommel

16 Unoptimized 3.4999 7.96E-4 0.0167
Grammar 3.4999 7.96E-4 0.025
Time 1.9999 0.1797 0.05

Combined∗ 1.0 – –

The boldface shows the significance at α = 0.05, while
asterisk (*) shows the best variant. These results are on 16
cores only due to space constraints

Table 4 The mean best generation (MBG ± [standard deviation]) of all the four GAPP (Unopti-
mized, Grammar, Time, Combined) variants on 16 cores and the lowest MBG is in boldface

GAPP

Unoptimized Grammar Time Combined

Problem MBG MBG MBG MBG

1 59.14 ± [4.96] 45.38 ± [2.81] 51.63 ± [6.19] 43.27 ± [5.37]
2 38.43 ± [2.85] 31.19 ± [4.73] 39.35 ± [3.19] 36.51 ± [3.67]

3 77.36 ± [5.58] 44.73 ± [5.26] 65.19 ± [6.43] 59.89 ±[4.15]

4 71.83 ± [6.37] 59.14 ± [5.34] 68.88 ± [4.51] 61.43 ± [5.19]

5 56.68 ± [2.19] 47.53 ± [2.19] 51.09 ± [2.39] 45.32 ± [4.92]
6 49.25 ± [4.57] 40.49 ± [5.23] 52.49 ± [2.58] 47.28 ± [3.15]

Friedman tests with Hommel’s post-hoc analysis. Boldface shows the

significance at α = 0.05, while asterisk (*) shows the best variant.

GAPP variant Average rank p-Value p-Hommel

Unoptimized 3.0 5.3205E-4 0.001596
Grammar∗ 1.16666 – –

Time 2.33333 0.0321438 0.042
Combined 1.99999 0.0024787 0.02

(Combined)) variant, and is marked with an asterisk (*). A variant is significantly
different from the best variant if p-value is less than p-Hommel at α = 0.05, and
is in boldface. A value is in boldface if it is significantly different from the best
variant. The p-value of the corresponding method is less than the critical p-Hommel
at α = 0.05.

The performance on 2 cores is insignificant as the cost of thread overheads offset
the performance gains. For 4 cores, GAPP (Combined) significantly outperforms
the remaining three variants. For 8 and 16 cores, GAPP (Combined) outperforms the
two GAPP (Unoptimized, Grammar) variants, and the difference with GAPP (Time)
is insignificant due to the presence of execution time in their fitness evaluation.

Table 4 shows MBG of the four GAPP variants and statistical tests. GAPP
(Grammar) outperforms GAPP (Unoptimized, Time, Combined), which requires
a less number of generations over the remaining variants in synthesizing the best
programs.

Although GAPP (Grammar) takes a few generations to synthesize parallel
recursive programs, performance results (Fig. 3) show that GAPP (Time, Combined)
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outperform GAPP (Grammar), where GAPP (Grammar) synthesized programs are
not as efficient as that of GAPP (Time, Combined). However, GAPP (Combined)
outperforms GAPP (Time) in terms of MBG (Table 4), where GAPP (Combined)
is quick to synthesize efficient parallel recursive programs. Therefore, GAPP
(Combined) is the best variant that reports an average (on the recursive problems)
speed-up of 8.13 on 16 cores, an improvement of 23.86% over GAPP (Unoptimized)
that reports 6.19 speed-up.

5.2 Iterative Sorting

Figure 4 shows the speed-up of GAPP (Unoptimized, Grammar, Time, Combined)
on the four iterative sorting benchmarks for 2, 4, 8 and 16 cores. Table 5
shows the Friedman tests with Hommel’s post-hoc analysis on speed-up of GAPP
(Unoptimized, Grammar, Time, Combined) for 16 cores. A variant with the lowest
rank is the best variant (GAPP(Combined)) and marked with an asterisk (*).

For 4 cores, GAPP (Combined) outperforms GAPP (Unoptimized) while it is
insignificant from GAPP (Grammar, Time). For 8 and 16 cores, GAPP (Combined)
outperforms GAPP (Unoptimized, Grammar) and is insignificant over GAPP
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Fig. 4 The speed-up of all the four GAPP (Unoptimized, Grammar, Time, Combined) variants on
the four iterative sorting problems for 2, 4, 8, and 16 cores
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Table 5 Statistical tests on speed-up of GAPP for recursion with 16 cores

Cores GAPP variant Average rank p-Value p-Hommel

16 Unoptimized 4.0 0.001015 0.0166
Grammar 3.0 0.0204597 0.025
Time 2.0 0.2733216 0.05

Combined∗ 1.0 – –

Table 6 The mean best generation (MBG ± [standard deviation]) of all the GAPP (Unoptimized,
Grammar, Time, Combined) variants (The lowest generation is in boldface)

GAPP

Unoptimized Grammar Time Combined

Problem MBG MBG MBG MBG

1 67.19 ± [4.16] 37.63 ± [3.19] 73.27 ± [3.31] 41.27 ± [0.81]

2 47.61 ± [3.51] 31.35 ± [3.65] 51.51 ± [3.67] 33.49 ± [2.95]

3 58.69 ± [5.86] 44.19 ± [6.43] 62.89 ±[4.15] 35.27 ± [3.46]
4 54.11 ± [3.43] 29.88 ± [4.51] 61.43 ± [5.19] 31.14 ± [3.17]

Friedman statistical tests with Hommel’s post-hoc analysis. Boldface

represents the significance at α = 0.05, while asterisk (*) shows the

best variant among all the four GAPP variants.

GAPP variant Average rank p-Value p-Hommel

Unoptimized 3.25 0.0284597 0.025
Grammar∗ 1.25 – –

Time 3.75 0.0061698 0.0166
Combined 1.75 0.5838824 0.05

(Time). GAPP (Combined) shows an average speed-up of 11.03, an improvement
of 15.75% over GAPP (Unoptimized), which has an average speed-up of 9.29.

Table 6 compares the MBG of GAPP (Unoptimized, Grammar, Time, Combined)
and their statistical significance. GAPP (Grammar) outperforms GAPP (Unopti-
mized, Time) while it is insignificant over GAPP (Combined). GAPP (Grammar)
produces parallel iterative sorting programs in a less number of generations over
GAPP (Time). It is because of the variation in the design of grammars among GAPP
variants, which in fact impacts the evolution of programs. However, GAPP (Com-
bined) evolves efficient programs over GAPP (Grammar) (see Fig. 4). Therefore,
GAPP (Combined) is the best variant for the evolution of efficient parallel iterative
sorting programs.

6 Enhancements in GAPP

We analyze the effect of OpenMP thread scheduling on performance of the GAPP
evolved parallel programs, both in recursion and iterative sorting domains. We find
that code growth in GAPP is surprisingly insignificant [19, 22, 23], therefore it does
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not affect the program execution. We found that the thread scheduling has a distinct
influence on both the problem domains.

6.1 Recursion

The quality of parallel code is difficult to quantify as execution time often depends
on the ability of OS to efficiently schedule the tasks. This job itself is complicated
by other parallel threads (from other programs) running at the same time. OpenMP
abstracts away much of these concerns from programmers, which makes it easier at
the cost of some fine control. We compensate this through adapting a program to the
hardware.

Excessive Parallelism Hardware caps the maximum number of threads; however,
in the grammars each recursive call spawns a new thread. OS factors, specifically for
the Linux kernels, eventually fail to scale in scheduling a high number of threads [9].
Moreover, when a parent thread spawns a child thread, it sleeps until all the child
threads have finished. This process is expensive, when a large number of threads are
involved. Memory access restrictions over shared and private variables can add to
the complexity of the executing code. Complexity in this instance comes from the
vagaries of scheduling what can be a high number of threads. We extend GAPP to
overcome these limitations.

Extending GAPP for Recursion Armed with the knowledge of excessive paral-
lelism, we constrain the system so as to optimize the degree of parallelism. We
combine parallel and serial implementations of the evolved programs, which, further
improves the performance. This reduces the overhead caused due to excessive
parallelism as the top level recursive calls distribute load across a number of threads,
whereas the lower level calls appropriately carry out the work instead of merely
invoking more threads. Evolution detects the exact level at which recursion switches
from parallel to serial. The intermediate results are saved temporarily in an auxiliary
variable and are shared amongst all the threads under execution. This ceases the
creation of exponential number of threads thereby reduces the overhead caused due
to excessive parallelism.

The GAPP grammars used for recursive benchmarks (Sect. 3.1) are modified as
shown in Fig. 5, termed as GAPP (Scaled), hereafter. We alter the non-terminal
<condition> to synthesize nested if-else condition blocks. The changes generate
a program that reduces the execution time of the final programs, which evolve a two
digit thread limiting constant, at which, the program starts to execute sequentially.

Figure 6 shows an example of the GAPP (Scaled) generated Fibonacci program.
It evolves a thread limiting constant for a given problem and the computational
environment; this constant, arrests the further creation of threads and continues
to execute serially. The intermediate result (temp in else if ) is shared among the
threads, thus, further optimizes the execution time, thereby, efficiently exploits the
power of multi-cores.
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〈condition〉 ::= if(〈input〉〈lop〉〈const〉) { 〈nl〉 〈line1〉; 〈nl〉 〈line2〉; 〈nl〉 }

is altered to appear as

〈condition〉 ::= if(〈input〉〈lop〉〈const〉) { 〈nl〉〈line1〉; 〈nl〉〈line2〉; } 〈nl〉 else if
(〈input〉〈lop〉〈const〉〈const〉) { 〈nl〉〈line1〉; 〈nl〉 〈line2〉; 〈nl〉 }

Fig. 5 The enhanced GAPP grammars to synthesize parallel recursive Fibonacci program

if (n <= 2) {
temp = n; res += temp;

}
else if (n <= 39) {

temp=fib(n-1)+fib(n-2); res +=temp;
}
else {

#pragma omp parallel sections private(a) shared(n, temp, res) {
#pragma omp section {

a = fib(n-1);
#pragma omp atomic

res += temp+a;
}
#pragma omp section {

a = fib(n-2);
#pragma omp atomic

res += temp+a;
} } }
return res;

Fig. 6 GAPP (Scaled) evolved program that combines both parallel and serial execution

The constant (39) in the else if (in Fig. 6) condition is the thread limiting constant
for 16 cores. Figure 7 shows the thread limiting constants (standard deviation) with
respect to the number of cores for the six benchmarks. These constants adapt to
the underlying hardware architectures. For example, the constant (39), which, at
a large input (say, a 1000000 element array) may not be an optimal value, that
can be a bigger constant. This is addressed with digit concatenation grammars [42,
Chapter 5].

Figure 8 shows the speed-up of GAPP (Scaled) over all the six benchmarks
for 2, 4, 8, and 16 cores. Like the other GAPP variants, the speed-up of GAPP
(Scaled) improves with an increase in the number of cores. Especially, the speed-up
of GAPP (Scaled) can be better seen, where the performance is much better than its
counterparts.

Table 7 presents the mean best generation (MBG) of GAPP (Unoptimized,
Grammar, Time, Combined, Scaled) variants. The results show that GAPP (Gram-
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Table 7 The mean best generation (MBG ± [standard deviation]) of GAPP (Grammar, Com-
bined, Scaled)

GAPP
Unoptimized Grammar Time Combined Scaled

Problem MBG MBG MBG MBG MBG

1 59.14 ± [4.96] 45.38 ± [2.81] 51.63 ± [6.19] 43.27 ± [5.37] 44.38 ± [2.81]

2 38.43 ± [2.85] 31.19 ± [4.73] 39.35 ± [3.19] 36.51 ± [3.67] 39.11 ± [4.73]

3 77.36 ± [5.58] 44.73 ± [5.26] 65.19 ± [6.43] 59.89 ± [4.15] 52.17 ± [4.45]

4 71.83 ± [6.37] 59.14 ± [5.34] 68.88 ± [4.51] 61.43 ± [5.19] 64.88 ± [3.51]

5 56.68 ± [2.19] 47.53 ± [2.19] 51.09 ± [2.39] 45.32 ± [4.92] 44.53 ± [2.19]
6 49.25 ± [4.57] 40.49 ± [5.23] 52.49 ± [2.58] 47.28 ± [3.15] 42.49 ± [5.23]

The lowest value is in boldface

Table 8 Friedman statistical
tests with Hommel’s post-hoc
analysis on speed-up and
MBG of GAPP
(Unoptimized, Grammar,
Time, Combined, Scaled)

GAPP variant Average rank p-Value p-Hommel

Speed-up

Unoptimized 4.5 1.2604E-4 0.0125
Grammar 4.5 1.2604E-4 0.0166
Time 3.0 0.0284597 0.025
Combined 1.9998 0.0347332 0.05
Scaled∗ 0.99999 – –

Mean best generation

Unoptimized 4.333333 0.0019107 0.0125
Grammar∗ 1.5 – –

Time 3.833333 0.0105871 0.01667
Combined 2.49998 0.0355132 0.05
Scaled 3.666667 0.0176221 0.025

Boldface shows the significance (at α = 0.05) and asterisk
(*) shows the best variant

mar) generates a program faster than the two GAPP (Combined, Scaled) variants
because of the grammatical bias. However, the last two GAPP (Combined, Scaled)
variants use execution time in fitness evaluation. Thus, the evolution becomes hard,
nevertheless, GAPP(Scaled) generates the efficient task parallel recursive programs.

Table 8 shows the non-parametric Friedman tests with Hommel’s post-hoc
analysis on speed-up and MBG of GAPP variants. The best variant with the lowest
rank is marked with an asterisk (*), and significantly different variants are in
boldface.

For speed-up, GAPP (Scaled) outperforms the remaining four GAPP variants.
Note, these results are for 16 cores of a processor, and are similar for 8 cores,
while they are insignificant with 4 cores and below. On average, for 16 cores, GAPP
(Scaled) speeds up by a factor of 9.97, which improves over GAPP (Combined)
and GAPP (Unoptimized) by 17.45% and 37.91% respectively. On an average, for
16 cores, GAPP (Scaled) shows a speed-up of 9.97, a significant improvement of
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17.45% over GAPP (Combined). Similarly, a significant improvement of 37.91%
over GAPP (Unoptimized).

For MBG, GAPP (Grammar) outperforms the other four GAPP variants. These
results are for 16 cores, while they are similar for 8 and below. Although GAPP
(Scaled) requires slightly more generations over other variants, GAPP (Scaled) is
the best amongst all the GAPP variants in this paper, as it generates efficient parallel
recursive programs.

However, a similar solution is to keep a table that records the result of a recursive
call in its first evaluation, then, refer the table for the repeated recursive calls, similar
to Koza [36]. However, that approach has often been criticized [38] for not being an
exact recursion. We now analyze and extend GAPP for iterative sorting domain.

6.2 Iterative Sorting

In contrast to excessive parallelism in recursion, factors such as OpenMP work
load scheduling plays a vital role in optimizing the performance of synthesized
iterative sorting programs. Interestingly, OpenMP hides these details from the
developer, which makes it easy to use, at the same time hard to realize their full
potential. Load balancing by parallel threads is a serious concern on shared memory
processors. OpenMP scheduling strategies (static, dynamic, guided) solve these
performance issues effectively. However, optimally assigning the optional chunk
size (chunk) explicitly is difficult, as the ideal value often requires the problem
specific knowledge. The input chunk size changes with respect to the loop iterations,
number of cores, and the threads under execution. On the other hand, smaller chunks
of data leads to a well known parallel programming challenge of false sharing.

False Sharing False sharing is a performance challenge that occurs when threads
on different cores modify variables that reside on the same cache line [50],
which invalidates the cache line and forces a memory update, thereby reduces the
performance. Precisely, if one core tries to load the same cache line loaded by
another core, that line is marked as “shared” access. If this core stores shared cache
line, then that line is marked as “modified” and all the remaining cores will receive
a cache line “invalid” message. Herein, if any core tries to access the cache line
marked with modified, that line will be written back to the memory and marks it as
“shared”. The other cores that try to access the same cache line will incur a cache
miss. This frequent coordination among the cores, cache lines and memory that
caused due to false sharing significantly degrades the performance of an application.

False sharing can be avoided by placing the variables far apart in the memory
(using some compiler directives) so that they do not align in the same cache line. In
the case of arrays, it can be avoided by aligning the array of elements on the cache
line boundary. If this is impossible, we can set the array size to double the cache
line, which is possible when dynamically allocating the array sizes. Our extensions
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〈schedule〉 ::= schedule(〈type〉, CHUNK)

is altered to appear as

〈schedule〉 ::= schedule(〈type〉, 〈const1〉)

〈const1〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 〈const1〉〈const1〉

Fig. 9 The enhanced GAPP grammars to synthesize parallel recursive Fibonacci program

for(i=0; i < length; i++) {
if (i%2 == 0) { //start of even phase
#pragma omp parallel for shared(A,length) private(j,temp)

schedule(dynamic, 89) {
for(j=1; j < length-1; j+=2) {

if(A[abs(j-1)]<A[abs(j-0)]) {
temp=A[abs(j-1)]; A[abs(j-1)]=A[abs(j-0)]; A[abs(j-0)]=temp;

} } } }
else { //start of odd phase
#pragma omp parallel for shared(A,length) private(j,temp)

schedule(dynamic, 87) {
for(j=1; j < length-1; j+=2) {
if(A[abs(j)] > A[abs(j+1)]) {
temp=A[abs(j+1)]; A[abs(j+1)]=A[abs(j+0)]; A[abs(j+0)] = temp;

} } } }
} // end for loop

Fig. 10 Evolved Odd-Even program that shows efficient performance

of GAPP ensure that controlling the array sizes helps to deal with false sharing in
improving the performance of the evolving programs.

Extending GAPP for Iterative Sorting This section proposes to solve the false
sharing that further extends GAPP to evolve more efficient parallel iterative sorting
programs. We overcome the problem of ideal load balancing by evolving an
appropriate chunk size that is independent of the problem and the number of cores
that it executes. We adopt the digit concatenation grammars [42] for symbolic
regression.

Figure 9 shows the modified GAPP grammar that automatically generates a
sequence of digits. The evolved chunk size adapts to the number of cores, amount of
load, and the number of threads. The proposed enhancements evolve more efficient
programs.

Figure 10 presents the successfully evolved parallel iterative Odd-Even sort
program using GAPP (Scaled) grammars. Note, the program contains two constants
(89, 87) as it operates in two phases (odd and even).
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Table 9 GAPP (Scaled)
evolved chunk size (mean ±
[standard deviation]),
averaged across 50 runs for
all the four experimental
problems on 8 and 16 cores
respectively

chunk size (CHUNK)
Problem 8 cores 16 cores

Bubble sort 135.17 ± [18.39] 55.43 ± [10.62]

Quicksort 159.34 ± [22.71] 67.91 ± [13.37]

Odd-Even sort 166.81 ± [17.33] 80.15 ± [12.59]

Rank sort 142.53 ± [21.45] 74.58 ± [11.11]
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Fig. 11 Performance of GAPP (Scaled) on four iterative sorting benchmarks

Table 9 shows the GAPP (Scaled) evolved constants (chunk size). These are
averaged from the evolved best of run programs across 50 runs. The chunk results
are reported for 8, and 16 cores. They showed significant performance optimization
while, 2 and 4 are insignificant, hence, neglected. As a result, the evolved constants
balance the load effectively. These chunk sizes created larger data arrays as opposed
to the arrays with a default chunk size of 10. Creation of larger chunks of data
helped in controlling false sharing, is evident at the higher number of cores, thus,
the performance improves.

Figure 11 shows the speed-up of GAPP (Scaled) evolved programs. The results
indicate that the performance improves with an increase in the number of cores. It
shows an average speed-up of 12.52 for 16 cores, a better improvement of 11.91%
over GAPP (Combined), an improvement of 25.79% over GAPP (Unoptimized).

Table 10 represents the Wilcoxon Signed Rank Sum significance tests between
GAPP (Scaled) and GAPP (Combined) at α = 0.05. It contains the p-value for the
corresponding problem while “��” indicates that the difference between the results
of both the methods is significant; that is, p < 0.05.
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Table 10 Significance tests (at α = 0.05) show that GAPP (Scaled) outperforms GAPP
(Combined) for 8 and 16 cores

Wilcoxon signed rank sum test

Cores Problem Rank sum p-Value Significant A-measure

8 1 2089 0.00632 �� 0.6183

2 2798 0.03183 �� 0.3917

3 3321 0.01119 �� 0.7392

4 2479 0.04178 �� 0.2851

16 1 2250 0.04261 �� 0.3545

2 2701 0.00018 �� 0.8751

3 3253 0.00461 �� 0.6559

4 2221 0.03516 �� 0.5215

Note that “��” states that the results are significant (p-value < 0.05). A measure shows the
probability at which, GAPP (Scaled) is better over GAPP (Combined)

Vargha and Delaney [52] A-measure states how often that GAPP (Scaled)
outperforms GAPP (Combined). A-measure lies in between 0 and 1: when it is
above 0.5, GAPP (Scaled) is better than GAPP (Combined); when it is 0.5, then both
are equal; when it is less than 0.5 GAPP (Combined) is better than GAPP (Scaled);
if it is close to 0.5, the difference is small, otherwise the difference is large. For
example, on Bubble sort with 16 cores, 35% of the time, GAPP (Scaled) performs
better than GAPP (Combined). In other words, 65% of the time, GAPP (Combined)
performs better than GAPP (Scaled). Overall, GAPP (Scaled) performs better than
GAPP (Combined). Similarly for MBG, GAPP (Grammar) takes a less number of
generations to evolve a parallel program. However, GAPP (Scaled) exhibits better
performance with a few extra generations.

7 Conclusion

We presented GAPP to automatically generate efficient task parallel recursive and
data parallel iterative sorting programs. GAPP offered a separation between the task
and data parallelism in the design of the grammars along with the execution time
in fitness evaluation. The modifications in the grammar favored quick generation
of programs, while the execution time helped in optimizing their performance. We
then analyzed the effect of OpenMP thread scheduling on performance of both the
problem domains. We ceased the excessive parallelism, while restricting the degree
of parallelism in the evolving programs. We limited this behavior with the evolution
of programs that run both in serial (for lower level recursive calls) and parallel,
thus, further optimized the performance. The most interesting contribution is the
automatic load balancing that adapts to the experimental hardware environment,
with which, the system has further improved the performance of the evolving sorting
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programs. The limiting constants for iterative sorting programs produce larger or
smaller constants with the help of digit concatenation grammars. GAPP can further
be extended to synthesize lock-free parallel programs, like in [24], applicable in
gaming industry. Moreover, the synthesizability of GAPP can be further leveraged
as in [14, 16, 18] that further improves the performance of the evolving parallel
programs in less number of generations. Similarly, probabilistic approaches [25] for
performance prediction help to further optimize the execution time.
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Design, Architecture, and Engineering
with Grammatical Evolution

Michael Fenton, Jonathan Byrne, and Erik Hemberg

Abstract Since its inception, Grammatical Evolution has had a rich history with
design applications. The use of a formal grammar provides a convenient platform
with which users can specify rules for design. Two main aspects of design evolution
are the grammatical representation and the objective fitness evaluation.

The field of design representation has many strands, each with its own strengths
and weaknesses for particular applications. An overview is given of four popular
grammatical representations for design: Lindenmayer Systems, Shape Grammars,
Higher Order Functions, and Graph Grammars, with examples of each.

The field of design is dominated by two often conflicting objectives: form and
function. The disparity between the two is discussed: Interactive Evolutionary
Design is examined in its capacity to provide a truly subjective fitness function for
aesthetic form, while engineering applications of GE provide a basis for objective
mathematically-based fitness evaluations. Finally, these two techniques can be
combined to allow the designer to decide exactly how balance the optimisation and
exploration of the process.

1 Introduction

Over the years, Grammatical Evolution has proved to be a prominent choice for
design applications. The use of a formal grammar for describing the representational
search space provides a convenient and powerful platform with which users can
specify rules for design, and has proved to be extremely popular.
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The automation process in evolutionary design can be used to stimulate and
compliment the creativity process for many designers [23]. Population-based
evolutionary algorithms are particularly fitting in this regard, as a range of potential
solutions can be presented to designers, rather than a single option. As many
facets of design are subjective, the aspect of choice resultant from a population of
candidate solutions is a key asset intrinsic in evolutionary algorithms.

As with any application of an evolutionary algorithm, there are two main aspects
to address in evolutionary design:

1. The encoding of the representation, and
2. The fitness evaluation of the phenotype.

1.1 Grammatical Representations for Evolutionary Design

With evolutionary algorithms, the representational encoding of the problem is one
of the most important elements of the entire system. The representation defines
the permissible space of problems through which the evolutionary process can
search. With grammatically-based systems, the grammar essentially defines the
representation space: the full range of solutions that are capable of being represented
by the grammar itself. The representation space is a subset of the wider search space,
which includes the universe of all possible solutions (viable or otherwise) to the
problem.

When considering the basic components of a solution which are required to solve
any given problem, many have somewhat constrained representational prospects.
For example, symbolic regression problems are typically composed of problem
variables (i.e. x[0], x[1], etc.) and an array of mathematical operators that can be
combined to form an evaluable symbolic expression; program synthesis problems
are typically composed of code snippets that can be combined to form an executable
piece of code. Without these essential components, these various representations are
incomplete, and individual problems cannot be solved. Design, on the other hand, is
far more open-ended.

Consider an image of a simple square shown on the left in Fig. 1. Suppose this
square was the output of a grammatical representation that has been designed to
generate simple geometrical objects. This representation can be defined in numerous
different ways, a small number of which are shown on the right of Fig. 1:

1. Solutions can be composed of angled sections in various states of rotation,
2. Solutions can be composed of straight lines,
3. Solutions can be the exterior perimeter of a composition of smaller geometrical

objects, or
4. Solutions could use a form of vector or turtle graphics, with distances and angles

dictating the form of the solution.

This relative freedom in representational ability makes grammatical systems
extremely suitable for design applications.
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Fig. 1 Example visual
representation options for a
simple square (left), with
solutions (right) comprised of
angled sections, straight lines,
multiple smaller geometrical
shapes, and turtle graphics

While there are a very high number of different representational encodings for
design using grammatical systems, a select few of the most popular variants are
described in detail in this chapter:

1. Lindenmayer Systems (L-Systems);
2. Shape Grammars;
3. Other representations (including Higher Order Functions and Graph Gram-

mars).

1.2 Evaluation in Evolutionary Design

Automating any design process represents somewhat of a dilemma for those seeking
to implement such a system. Assuming the objective functionality of the basic
design criteria has been met (i.e. at its basest level the design can be considered
“fit for purpose”, regardless of how fit that may be), many aspects of design are
purely subjective. However, this subjectivity raises possibly the largest obstacle for
those seeking to automate the design process [28]: how can subjective creativity be
accurately measured?

A crucial component of any Evolutionary Computation system is the fitness
function, i.e. a way to reliably evaluate candidate solutions so that the population can
be ranked by selection/replacement operators. In a creative design environment, how
can one quantify subjective form in an automated fitness function? For example,
how could an image generation system quantify whether one image is “better” than
another?

Since aesthetic design can be highly subjective, the most basic solution to the
dilemma of evaluation lies in interactive fitness functions. This allows the user to
directly specify their preferences and assign fitness values to the population through
methods such as ranking/sorting the population with respect to preference, or by
simply selecting their preferred elite solutions. However, the use of human input in
the evolutionary process presents a significant bottleneck in the overall system.

An alternative solution which bypasses this bottleneck lies in the more traditional
use of mathematical analysis of evolved solutions in order to optimise some pre-set
aspect of the solution (as in typical mathematical applications such as regression
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where the goal is to minimise some error metric). Such approaches can be used in
cases where there are more than just aesthetic considerations, and aspects of the
design beyond the original functionality can be objectively quantified. One such
example would be in engineering design, where there are not only hard limits and
constraints for the functional specification of the design, but well-defined objectives
such as the minimisation of deflection or of self-weight.

1.3 Chapter Overview

The chapter continues as follows. Section 2 covers the representations identified
in Sect. 1.1. Section 2.1 describes the use of Lindenmeyer systems in grammatical
representations for evolutionary design, including GENR8, a popular architectural
design tool using Grammatical Evolution. Shape grammars are detailed in Sect. 2.2.
Alternative representations are described in Sect. 2.3, including Higher Order
Functions and Graph Grammars.

Fitness evaluation in evolutionary design is covered in Sect. 3. The field of
subjective interactive evolutionary design is outlined in Sect. 3.1, and Sect. 3.2
details objective numerical evaluation. A particular focus is made on engineering
design applications of Grammatical Evolution in Sect. 3.2.2. Finally, the chapter
concludes with Sect. 4.

2 Grammatical Representations for Evolutionary Design

In this section, we survey an number of historically popular representations of GE
for evolutionary design: (1) Lindenmayer systems (2) Shape grammars (3) Other
representations.

2.1 Lindenmayer Systems

Lindenmayer systems (L-systems) are a mathematical formalism which was pro-
posed by Aristid Lindenmayer in 1968 as a foundation for an axiomatic theory of
development [30]. An L-system consists of an alphabet of symbols that are used to
write strings, and a collection of production rules for expanding each symbol into
another string of symbols. An initial string, called an axiom, is used as the starting
point for writing. L-system rules are recursive; this can lead to self-similarity,
allowing for the expression of fractal-like forms.

Computer scientists study L-systems from the formal language theory perspec-
tive, e.g. as rewriting rules. L-systems have found widespread use in certain areas of
computer graphics, including the generation of fractals and the realistic modelling
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Fig. 2 A population of example images generated by L-systems using an interactive version of
GE [19]

of plants [48]. L-systems tend to exhibit emergent behaviour, with results that can
often surprise users [34]. A sample of simple images generated using L-Systems
with an interactive version of PonyGE [19] is shown in Fig. 2.

A 2001 study on the advantages of generative grammatical encodings for
physical design [26] investigated the automatic creation of designs. This study
combined L-systems with evolutionary algorithms and applied them to the problem
of generating table designs. Evolved designs contained an order of magnitude more
parts than previous generative systems. Significantly, the generative version of the
system produced designs with higher fitness and is faster than a non-generative
system.

In [47], GE was used to design fractal curves with a given dimension. The
ideas behind the evolution of grammars were used to automatically generate and
evolve L-system grammars to represent fractal curves with a fractal dimension that
approximates a pre-defined required value. When examined from the perspective of
manual implementation for many dimensions, this is a non-trivial task. In addition,
the task of taking a graphical object and attempting to derive an L-system to describe
was shown to be a particularly hard problem [1].
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Logo design can range from purely functional to highly expressive. Finished
logos are intended to convey a clear meaning and to conform to a pre-defined
style. L-systems were used for logo design in [42], with the resulting phenotypes
expressed in the Postscript language. An interactive, “human-in-the-loop” fitness
function was used for fitness evaluations, with all individuals being manually
assigned a fitness value in sequence. Subsequent logo design work [33] allowed
users to simply select desired elite solutions from a population of potential designs
(as shown in Fig. 2). This interactive evaluation process was intended to demonstrate
a range of attractive possibilities and to give the viewer an insight into the
evolutionary design process. Evolved solutions were deemed of high enough quality
to be entered into an evolutionary art competition.

As generated solutions exhibit emergent behaviour that can often produce
unexpected results, L-systems are typically deployed for design exploration [26].
However, this emergent behaviour also has its downsides. Since a high degree
of the generated phenotype is resultant from the generative aspects of L-systems
themselves, the genetic encoding plays a comparatively diminished role in the
definition of the overall solution [34]. Considering that standard implementations
of Grammatical Evolution are noted to have locality issues [50], L-systems can yet
further decrease locality, leading to a perceived increase in entropy in the system.
While this may be desirable for design exploration (where the user is seeking new
or surprising solutions), it means that small, fine-grained changes are difficult for
such a system to make.

2.1.1 GENR8

GENR8 is an interactive evolutionary surface design tool created by Martin Hem-
berg and Una-May O’Reilly at MIT’s Emergent Design Group [23, 46]. GENR8
uses a combination of Grammatical Evolution as an evolutionary engine and an
extension of traditional L-systems, known as “Hemberg Extended Map L-Systems”
(HEMLS) as an evolutionary representation [21]. HEMLS are based on Map L-
systems, a specialised version of L-Systems used to re-write planar graphs with
cycles. While traditional L-systems typically make use of recursion to “grow” an
arboreal structure, map L-systems generate graphs that can be interpreted as surfaces
[23]. HEMLS extend these Map L-Systems from two to three dimensions, allowing
for three-dimensional surfaces to be generated [23].

The original concept for GENR8 arose from the Emergent Design Group in MIT,
a collaboration between the School of Architecture and key computer scientists [23].
Architects sought a tool which could provide a range of candidate solutions, and
which could adapt to changing desires and objectives during the design process.
The main interface of GENR8 comprises an interactive three-dimensional design
environment featuring variable attractors, repellors, boundaries, along with a fixed
global gravitational force. Users can add, remove, or modify the various forces and
limitations of the design environment in order to affect the growth of solutions
within the environment. As such, only three things are needed for a surface to be
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created using GENR8: a starting point for the structure, known as a seed, a set of
rules dictating how that seed will grow, and an environment in which the seed can
grow [20].

GENR8 has been in use by both students and professional architects since
2003 [24, 25]. A survey of a number of noteworthy projects using GENR8 was
completed in both [24] and [25]. Of note is the variety and distinction between
projects; the authors reflect that since the GENR8 system (1) uses a generative,
emergent representation (HEMLS), and (2) is extremely open-ended, there is a near
impossibility to predict either how users will operate the system or what the system
will produce. Therein, they argue, lies the crux of what makes a generative design
aid like GENR8 such a useful prospect.

2.2 Shape Grammars

Shape grammars are a way to represent components of visual images as terminals
in a formal grammar structure [51]. With shape grammars, terminals can be
represented as elementary shapes or lines, in two or three dimensions. Boolean
operations such as union, intersection, difference, and complement can be applied
to these shapes, as well as Euclidean transformations such as translations, rotations,
reflections, scalings, and compositions [51]. An example of a generative process
using a shape grammar is shown in Fig. 3.

In an interdisciplinary collaboration between the schools of Computer Science,
Architecture, and Engineering, O’Neill et al. [44] applied shape grammars to the

(a) (b) (c)

Fig. 3 An example of a shape grammar [45]. (a) shows an example start shape for a shape
grammar. Example production rules are shown in (b), with non-terminals on the left of the
arrow and production choices on the right separated by the “|” separator. Finally, (c) shows an
example evolutionary progression of a shape grammar from the start shape defined in (a) using the
production rules defined in (b)
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area of architectural design. This work represented the first combination of shape
grammars, already known to be a powerful way to encode human design knowledge
[54], with a grammatical evolutionary algorithm.

In [44], shape grammars which generated a 250× 250 pixel binary output image
were represented in a similar fashion to GP-type symbolic expressions. A series of
successively more complex binary target images were then generated, with the aim
of evolving a matching target image. A basic fitness function was implemented to
iterate over all pixels in a candidate solution image. Since pixels could only take
binary values, the fitness of an individual was simply the number of correct pixels
in the image. However, since this fitness measure only rewarded perfectly accurate
re-creations of the target image, the system was less able to reward partial or near
success. For example, if an individual was evolved to produce a perfect but slightly
offset copy of the target image, it would not be recognized by this basic fitness
function.

In a subsequent follow-up paper, the same authors replaced the basic fitness
function with an interactive user-defined fitness function [45]. By implementing
the entire GEVA system [43] as a plugin for the Blender 3D design suite [16], an
interactive evolutionary design system was created. This system was used to design
single-person shelters, under the supervision and direction of collaborators from
the UCD School of Architecture. The shape grammars were extended into three
dimensions, and the use of a 3D design suite enabled simple evolved solutions to
be rendered in a visually attractive manner. An example evolved shelter is shown in
Fig. 4.

One notable issue with the designs produced by the shape grammars described in
[44] and [45] is that the combination of various shape elements through boolean
operations does not necessarily mean the individual elements within a structure
have “knowledge” of the other elements in the overall structure [35]. An example
of this can be seen in the structure shown in Fig. 4, where the “roof” and “wall”
components are connected through simple boolean intersection. In this instance, the

Fig. 4 A shelter designed
using interactive Grammatical
Evolution [45]
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intersection of these two components is fortuitous; a direct connection now exists
between them, allowing for this structure to be built. However, this intersection is
either a product of random choice (i.e. through crossover or mutation) or is the
intent of the designer (i.e. the user who evolved the structure using the interactive
fitness function), rather than an inherent aspect of the shape grammars themselves.
The use of shape grammars to define physical structures therefore means that
“impossible” structures can be potentially created if the grammar is not carefully
designed. Indeed, the structure shown in Fig. 4 implies the potential existence of an
un-connected free-floating “roof” element in the population.

2.3 Other Representations

The use of arbitrary language context-free grammars to define the genotype-to-
phenotype mapping process means that GE can be easily used to generate programs
which interact with external programs, i.e. GE can be used in conjunction with
other programs in order to control aspects of those programs. For example, a GE
individual could be directly evaluated by an external fitness function [15], or a
GE individual could describe a set of rules for modifying/controlling some external
program [39].

In some cases, the representation can be so simple that a complex mapping
process is not needed. In an engineering application of GE, Fenton et al. used a
simple grammar that generated an arbitrary number of points within a 2-dimensional
area [15]. These points were then deterministically connected using a Delaunay
triangulation algorithm [11] in order to generate a fully triangulated truss.

On the other hand, if software already exists which can generate such complex
representations, GE is perfectly placed to produce individuals in the form of pieces
of code which can interact directly with that software. Such is the case with Nicolau
and Costelloe’s use of GE [39] to evolve images using Jenn3D, a 3-dimensional
image generation program [40]. Their grammar produces settings for key parameters
of the Jenn3D software, with the software acting as a “black box” from which
aesthetically pleasing images are produced. Figure 5 shows an image generated by
this system which was the winning entrant to the Evolutionary Art competition at
the 2010 EvoStar conference in Turkey.

2.3.1 Higher Order Functions

Higher order functions (HOFs) are functions which can use other functions as either
input arguments or output returns. This capacity allows for modularity and re-use
of code, as a single function can perform many different actions depending on the
input arguments [27]. The use of HOFs in grammatical encodings has four distinct
advantages [34]:
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Fig. 5 Winning image from
the Evolutionary Art
competition at the 2010
EvoStar conference [39]

1. they can make optimal solutions shorter, which usually increases the likelihood
of being found,

2. their modularity and re-use aspects promote patterns in phenotypes,
3. they allow for non-entropic mutations, i.e. more consistent/constructive and less

destructive mutations, and
4. they provide users and designers with a unique and natural way to express their

artistic knowledge.

The use of HOFs in a formal grammar structure is particularly fitting, as they
afford the user new pathways with which to instil bias towards desired outcomes
[34]. Furthermore, the natural use of recursion and non-terminals in a grammar
structure makes code re-use and HOFs intuitive in a grammatical setting. Example
structures generated using HOFs are shown in Fig. 6.

2.3.2 Graph Grammars

In the context of design, shape grammars could be considered in some cases to be
similar to pixel-based art. By contrast, graph grammars are closer to a vector-based
representation [12, 31]. The principal feature of graph grammars is their use of nodes
and edges in the phenotypic representation. Whereas individual elements of shape
grammars do not necessarily connect to one another, the use of nodes and edges in a
graph grammar dictates direct connections between individual elements in a design
[31, 32] . This process is illustrated in Fig. 7.
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Fig. 6 Bridge designs
generated using a complex
Higher Order Function
grammar [13]

(a) Potential desired out-
come of shape grammar
(nodal connections).

(b) Potentially unwanted
behaviour from shape
grammars (non-nodal
connections).

(c) Graph grammars are
much more constrained, al-
lowing for precise outcomes
to be described.

Fig. 7 A major difference between shape and graph grammars is the use of nodes and edges
to define individual elements [31, 32]. (a) Potential desired outcome of shape grammar (nodal
connections). (b) Potentially unwanted behaviour from shape grammars (non-nodal connec-
tions). (c) Graph grammars are much more constrained, allowing for precise outcomes to be
described

While shape grammars are successfully used for pure design applications such as
art or product design [44, 45, 51, 52], the nature of graph grammars tends to better
suit skeletal design applications such as structural engineering design.

3 Evaluation in Evolutionary Design

3.1 Interactive Evolutionary Design

The designer and end user judge a design not only by objective functionality,
but also by subjective form. Despite the ability of evolutionary algorithms to
produce creative and novel designs, they have primarily been used to aid the design
process by optimising the functionality of a design, once it has been instantiated.
Designers should be able to express their subjective and objective intentions with
a design tool. To this end, several techniques that allow user input have been
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incorporated into evolutionary algorithms to allow the designer to express their
aesthetic considerations [53].

The most common technique for expressing subjective preference is to allow the
user to directly apply a fitness value to the generated designs. The designer directs
the algorithm as an objective function would but this limits their role to that of
an evaluator. This unfortunately causes a substantial fitness bottleneck due to the
required number of evaluations; it can be appreciated that if the population size is
large, this evaluation phase will take a long time [53].

The simplest way to reduce this fitness bottleneck is to use comparatively small
population sizes. Nicolau and Costelloe [39] used an interactive fitness function
for their image generation plugin to the Jenn3D image generation software [40].
As defined in Sect. 2.3, their system used GE to parametrically control the Jenn3D
software to create an image. With a population size of only 10 individuals, each
solution in the population was presented to the user sequentially, with the user
assigning a discrete integer fitness value to each solution. Permissible values ranged
from 1 (whereby the individual was instantly discarded from the population and
replaced with a new randomly generated individual) to 5. Interestingly, the authors
took advantage of the user-centric aspect of the overall system with a logical
extension; no limit to the maximum number of generations was set, i.e. evolution
was left open-ended. It was up to the user to end the evolutionary process.

Larger population sizes and sequential evaluation can significantly increase the
time required to complete an evolutionary run. This time can be offset by either
animating the changes or by presenting multiple images for the user to evaluate
simultaneously. This can readily and easily be achieved through the use of novel
interfaces and simplified evaluation approaches, as shown in Fig. 8. This will
increase the number of possible evaluations in an efficient manner. However, it still
acts as a bottleneck as users soon become tired of the evaluation process.

Novel interfaces and simpler rating systems can increase the number of eval-
uations carried out by the designer. One such approach described in [5] allowed
the designer to directly manipulate a design they were interested in by allowing
them to apply highly localised mutation operators. The results were presented as an
animated array (similar to the array on the left hand side of Fig. 8) which allows the
user to quickly evaluate the changes and also undo any mutations they did not like.

While novel interfaces can greatly improve the feedback and “feel” of the
interactive evolutionary process, this in itself does not get to the crux of the
problem. Design is a subjective process, and the designer needs to feel that they
are actually designing rather than evaluating [6]. The fundamental subjectivity
to the design process and the nebulous and ever changing goals of the designer
mean that interactive evolutionary design still presents a challenge to evolutionary
algorithms [53]. It is a mistake to treat the problem purely as an optimisation
problem and instead it must be framed as an interface for allowing the designer
to easily explore the search space of possible designs.
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Fig. 8 Screenshot of interactive fitness function from [5]. Target image is shown on the right, with
an array of 9 potential images on the left. Users are directed to select the image that most closely
matches the target image

3.1.1 Representations Revisited

A certain quandary is inherent with interactive evaluation. While Evolutionary
Computation systems are capable of having great detail in their representations,
this may not necessarily be feasible when interactive fitness functions are in use.
Indeed, a highly detailed representation may in fact hinder the evolutionary process
in an interactive setting, as noted by Nicolau and Costelloe [39]:

. . . consider a toy evolutionary image generation task where the goal is to produce a simple
black and white image on an N × N grid. The image could be encoded as a binary string of
length N2 – a representation that fits well with a Genetic Algorithm implementation.
This simple representation is powerful in that it permits the construction of every possible
2-dimensional monochrome image for a given value of N. If this were a standard, non-
interactive optimisation problem, this kind of representation would probably be suitable,
since the space of all possible solutions is covered, meaning that with the right conditions,
high-quality solutions are almost guaranteed as output from evolution.
But in an interactive setting, this type of (fine-grained) representation makes the construc-
tion of even the most basic shapes on the canvas a slow and difficult process. Adding to the
difficulty is the potentially destructive nature of the genetic operators of the GA.

Nicolau and Costelloe go on to note that for interactive applications (i.e. where
user input is required, creating a computational bottleneck), the use of pre-defined
elements in the building blocks of the representation is more likely to generate
desirable high-quality solutions earlier on in the evolutionary process. The notion
of such pre-defined elements ties in directly with grammar-based representations,
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where domain knowledge on the form of the desired solution can be easily
incorporated. It is therefore clear to see how grammar-based systems such as
Grammatical Evolution might prove appropriate in such applications.

3.2 Engineering Applications of Evolutionary Design

Design can be described as a marriage of exploration and purpose [17]. On the
one hand, the search space must be explored to find a suitable concept or form,
while on the other hand, the constraints of the original design specification dictate
the function of the solution. Thus, there quite often exists a dichotomy, a famous
conflict between form and function. While these two attributes of a design are not
mutually exclusive, there can be a trade-off when realising a design [4, 38].

For pure subjective design applications (such as visual art or aural music),
the search for optimal form can often satisfy the functional requirement in of
itself. However, for certain objective design applications such as architecture or
engineering, there are quite often hard physical limitations and constraints that
must be imposed on the designs themselves. Whereas the optimisation of form can
be said to be mostly subjective (and thus highly suited to “open-loop” interactive
fitness functions, as described in Sect. 3.1), physical limitations and constraints can
often be satisfied mathematically or in a boolean fashion through some inspection
of elements of the design itself. This is particularly the case with engineering
optimisation applications, where objective analyses on aspects such as weight or
material and structural stresses and strains can deliver deep insights into the physical
performance of the proposed design, providing the potential for non-interactive (i.e.
“closed-loop”) feedback to the system.

3.2.1 Engineering Constraints

An interesting point can be made in the case of constrained engineering problems.
Readers familiar with Grammatical Evolution will be aware of the term “invalid”
solutions. These are individuals whose chromosomes do not produce valid phe-
notypes, and thus cannot be evaluated. Since they cannot be evaluated, invalid
solutions are typically given a bad “default” fitness value in GE [41].

In constrained engineering optimisation, there may exist multiple soft con-
straints. These constraints act as part of the fitness function, and may include
such details as overall structural limits on deflection, or material limits such as
stress or strain. Importantly, solutions which fail any or all of these constraints are
still “valid” solutions. However, they are less desirable than solutions which pass
all of the given constraints. Hence, a distinction must be made between feasible
and infeasible solutions. Infeasible solutions are solutions that fail any or all soft
constraints.
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Evolutionary structural engineering optimisation will often require the designer
to satisfy multiple parallel objectives. Since there may be overlaps between both
design constraints and objectives, interaction between these constraints and the
overall individual fitness may have a significant impact on the quality of the designs
evolved. As such, a key challenge for designers when using evolutionary approaches
is to find an accurate metric that will allow the designer to judge individual
constraints, and to transform the performance of the individual relative to those
constraints into a single coherent value for use by the fitness function. As such, it is
important that infeasible solutions are penalised appropriately (i.e. with a gradient
based on the severity of the constraint failures) in order to impose a gradient on the
fitness landscape.

The use of soft engineering constraints can remove the need/use for multiple
objective optimisation in some cases. Since design specifications in the form of
maximum limits are usually given on critical aspects of the problem (such as
structural deflection and material stress), any structure which does not violate
these constraints is automatically deemed fit for purpose. Therefore, any further
optimisation of these particular aspects of the solution beyond the pre-defined limits
can be considered unnecessary, since the design is already fit for purpose. Evolution
can then focus on the more critical aspects of the problem, such as minimising the
self weight of the structure, or improving the aesthetic design. Essentially, once the
necessary criteria for solving the problem are met, focussed optimisation can take
place.

3.2.2 Engineering Applications of Grammatical Evolution

Formal grammars are well suited to engineering design since many design rules
and specifications can be easily represented by a grammar, and moreover can
often be readily parametrised to allow for more varied search [37, 49]. The use
of Grammatical Evolution as an optimisation engine is particularly complementary
to these assets, and its application to engineering design has proved to be quite
successful [7, 9, 15].

A major factor in engineering design is the analysis of proposed designs.
Engineering analyses can be (and have historically always been) performed by
hand, but are more recently being performed by complex design and analysis
software packages using methods such as finite element analysis [36]. The use of
analysis packages allows for complete quantitative numerical information about all
aspects of the proposed design. Viewed in the light of evolutionary optimisation,
any number of these aspects can form the basis of an objective in a fitness metric.
Analysis packages should thus be considered as an integral part of the overall fitness
function for engineering optimisation.

There have been a number of pure engineering design applications of Grammat-
ical Evolution over the years. Fenton et al. [14] proposed a grammatical framework
for evolving planar (two dimensional) truss structures. This work is a particularly
interesting use case of GE, as two genomes were evolved simultaneously. Each
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Fig. 9 Example topological layout and subsequent optimised structure evolved using DO-GE
[14]. (a) Complete topological layout for cantilever truss. (b) Example of evolved solution to suit
the design envelope specified in (a)

genome controlled separate aspects of an individual, hence the title “DO-GE” (Dual
Optimisation in Grammatical Evolution). The first genome (Genome A) dealt with
the topological layout of the structure (i.e. the location and connectivity of nodes
and edges) via the usual mapping through a grammar. Once the topology of the
structure was defined by the first genome, the truss member sizes were set through
a direct GA-style one-to-one mapping from the second genome (Genome B).
Structural analysis was performed using the free open-source finite element analysis
program SLFFEA [29], with the single objective of minimising the self-weight of
the structure.1 It was shown that the standard evolutionary process of Grammatical
Evolution is capable of handling multiple concurrent genetic components. An
example problem definition and derived solution is shown in Fig. 9.

A noted weak link of the work presented in [14] was the grammar itself.
This grammar was only capable of generating rectangular truss structures from
a small set of six pre-defined layouts, and ultimately could only generate 1890
unique phenotypes (note that this only describes the representation capabilities
of the grammar, and does not include all combinations of material sizes). This
representational limitation was addressed in a subsequent publication [15], with
the introduction of SEOIGE (Structural Engineering Optimisation In Grammatical
Evolution). Therein, a new technique for generating planar truss structures through

1Note that a single objective can be used when engineering constraints are implemented, as detailed
in Sect. 3.2.1.
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Fig. 10 Example of a design envelope and subsequent optimised structure evolved using SEOIGE
[15]. (a) Design envelope for curved truss. (b) Example of a curved truss evolved to suit the design
envelope specified in (a)

the use of a node-based grammar was introduced. This new technique evolved the
number and locations of nodes within a specified design envelope. Nodes were
then connected using a deterministic Delaunay triangulation algorithm [11]. The
use of a triangulation algorithm to connect evolved nodes means that all evolved
structures are guaranteed to be kinematically stable, i.e. no kinetic mechanisms can
be generated by such a system. This can be linked somewhat to the use of structural
form and geometry as a proxy for in-depth structural analysis in GENR8 [22],
although in the case of [15] a full analysis is also possible.

One additional feature of the node-based grammar from [15] is that the technique
allows for evolution of a structure to fit any design envelope that can be represented
as an equation. Since one dimension (y) is defined as a function of the other
dimension (x), any shape that can be so defined can be represented by the grammar.
A simple example is shown in Fig. 10, where a curved truss has been evolved to fit
an arched design envelope.

The truss optimisation work by Fenton et al. [14, 15] is also notable as fully code-
compliant hard and soft constraints were built into the fitness function, based on the
contemporary building standards and design codes of practice [2, 3]. Furthermore,
a discrete set of building materials was defined from real-world commercially
available construction elements (the indexes of which were specified by Genome B
in [14]). This is of particular note as the majority of the techniques polled from the
literature allowed for continuous optimisation of member sizings, i.e. member sizes
were optimised with no regard to construction viability. Despite the more limited
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Fig. 11 Structural analysis of a simple timber bridge generated by GE [13]

representation space when compared with other techniques from the literature (in
the case of material size optimisation) and the more difficult constraints (in the form
of full standards compliance), both techniques were able to evolve comparable, and
in most cases more efficient structures to those from the literature.

3.2.3 Multiple Objectives in Engineering Optimisation

Often engineering specifications require multiple conflicting objectives, such as
the minimisation of cost, weight, or structural deflection. Furthermore, these
quantitative numerical objectives may need to be combined with the subjective
aspect of the form of the design. As such, that makes the use of multi-objective
optimisation techniques key to many engineering design applications.

Byrne et al. [4] used NSGA-II [10] to evolve wooden bridge designs for the
conflicting objectives of minimal stress and minimal material usage. As with [9,
14, 15], structural analysis was performed using the free open-source finite element
analysis program SLFFEA [29]. The analysis visualisation for an example structure
is shown in Fig. 11. Experiments showed that Grammatical Evolution was capable
of driving towards Pareto-optimality, with combined results of a 34% reduction in
material usage and a 41% reduction in average maximum stress.

Byrne et al. applied Grammatical Evolution to a real-world problem, evolving
full-scale electricity transmission pylon towers for a design competition with the
Royal Institute of British Architects [9]. Similar to the truss optimisation works
detailed above [14, 15], this work combined real-world constraints and design codes
of practice to evolve optimal pylon designs for a variety of loading conditions.



Design, Architecture, and Engineering with Grammatical Evolution 335

Fig. 12 Final evolved pylon design, as submitted to the Royal Institute of British Architects’ 2011
pylon design competition [9]

Higher Order Functions (as described in Sect. 2.3.1) were used in the grammatical
representation to ensure fully connected structures, while Sierpinski triangulation,
a form of fractals similar to L-Systems, were used to enhance structural rigidity.
Due to variety in the loading cases, multiple objective optimisation in the form of
NSGA2 [10] was used to optimise pylons for minimal displacement and weight. The
final evolved and (ultimately unsuccessful) submitted design is shown in Fig. 12.

An interesting application of multiple objective optimisation for design is the
use of GE to evolve parametric aircraft models [7, 8]. Combining the use of a
parametric vehicle design platform developed by NASA and Sterling Software [18]
with fluid dynamics analysis, the authors used NSGA2 [10] to jointly optimise
aircraft designs for the opposing objectives of maximal lift and minimal drag. In
a number of case studies, the authors demonstrated that the wings of the popular
Cessna 182 light aircraft were already highly optimal, with the original wing design
lying very close to the optimised Pareto front of designs in terms of lift and drag
optimisation. However, a case study of the Russian MIG-21 fighter aircraft showed
that the original wing and tail sections were so highly adapted to supersonic flight
that even random search was able to find optimally superior solutions for regular
subsonic flight conditions.
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3.3 Optimisation vs Design Exploration

As noted in Sect. 3.1, the use of interactivity in design optimisation can be a double-
edged sword. While a fitness bottleneck may be created, the ability to directly
impose preference or design intent on the evolutionary process affords the designer
great power to exploit the system. However, both objective and subjective (i.e.
interactive) fitness functions can be combined, allowing for a “best of both worlds”
scenario where evolution can operate under either condition. Evolution under an
objective fitness function is typically termed “optimisation”, i.e. some defined aspect
of the problem is being optimised; evolution under a subjective fitness function is
typically termed “exploration”, as subjective preference cannot be so easily defined.

A good example of this marriage can be seen in GENR8 [23], which uses a
combination of interactive and automated fitness functions. In order to speed up
the creative process, it is possible for GENR8 to be run autonomously. Fitness is
calculated as a linear combination of five aspects of any given solution:

1. size,
2. smoothness,
3. soft boundaries,
4. subdivisions, and
5. symmetry.

The weighting of any and all parameters is a variable option open to change by the
designer during the course of a run. This approach allows the designer to invest as
little or as much input into the design process as they desire [46].

An interesting experiment from [4] combined an interactive aspect to the overall
evolutionary process of bridge designs, marrying multi-objective quantitative fitness
optimisation with a qualitative appraisal of subjective form. By presenting partici-
pants with a random selection of sample structures from both the first and last Pareto
fronts produced by NSGA2 (i.e. a sampling of structures that were either highly or
poorly fit in terms of engineering constraints), a survey of 28 participants found that
engineering constraints were more often than not in direct opposition to aesthetic
preferences. This suggested that aesthetic preferences had an inclination towards
more “unconstrained” forms. As such, an interactive aspect to design could be used
to trade off the seemingly opposed objectives of optimisation and design exploration
by combining both objective and subjective fitness functions.

4 Conclusions

Grammatical Evolution has strong links to design for both objective optimisation
and subjective exploration. The two main aspects are the design representation itself,
and the evaluation of candidate designs. The use of a formal context-free grammar
to define the representation of the system, combined with the separation between
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the genetic encoding and the phenotypic representation, provides a convenient and
powerful platform which can allow designers complete freedom of expression.
Furthermore, well known design representations such as Lindenmayer Systems can
aid the explorative aspect of the design process by injecting a generative element
into the evolutionary mix. Importantly, the use of grammars also supports the
instillation of bias and structure, should the designers so desire.

The use of arbitrary fitness functions in Evolutionary Computation (EC) allows
for a wide variety of fitness assessments to be coupled with the design process.
Since design is quite often subjective, interactive fitness functions can be merged
with many aspects of the EC process, including the specification of elite individuals,
selection of individuals for variation, and ranking of populations. For objective
design applications such as engineering optimisation, powerful analysis software
can be used in more traditional objective fitness functions. Engineering design
in particular can benefit from multiple objective optimisation, an area where EC
techniques excel. Finally, subjective fitness appraisal can also be combined with
traditional objective fitness functions in a “best of both worlds” scenario.
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Grammatical Evolution and Creativity

Róisín Loughran

Abstract This paper considers the application of Grammatical Evolution (GE)
to the concept of creativity both in theory and through the examination of two
applied music generation systems. We discuss previous work on the application
of evolutionary strategies to music generation and discuss current issues in the
study of creativity and Computational Creativity (CC). In presenting and contrasting
the development of two GE music generation systems, we can consider the multi-
faceted aspects of creativity and how it may be approached from a computational
perspective. The design of any such system is dependent on representation (what is
music?) and fitness measure (what makes this music good?). In any aesthetic domain
such questions are far from trivial. We conclude that it is vitally important to be clear
on the purpose and aim in proposing any such system; systems may be either more
generative or more autonomously creative if this is the a priori goal of the proposed
experiment. Furthermore, we propose that evolutionary systems, and in particular
GE, are highly suitable to the study of creativity as they can offer much scope in
representation through grammars while allowing exploration and the possibility of
self-adaptivity through the development of novel self-referential fitness measures.

1 Introduction

The ability to be creative is often thought to be a purely human quality; our
creativity is that which makes us special, unique, more than one of the masses.
Yet in recent years numerous computational methods have been applied to what
would conventionally be considered creative tasks. Traditionally, creativity has
been considered in terms of aesthetic talent; a person may be considered creative
because they display exceptional ability in painting, music or writing. But creativity
is merely an aspect of human intelligence. Creativity is not a specialised ability
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afforded only to the lucky few, but a way of thinking available to us all. Most humans
display creativity every time they solve a problem, hum a tune or make a witty
remark. As the field of Artificial Intelligence (AI) progressed, researchers began
to consider creativity not as an aspect of specifically human intelligence but one
of general intelligence. The study of the exhibition of creativity from autonomous
programs or machines has developed into the field of Computational Creativity
(CC).

The field of CC is currently defined as the philosophy, science and engineering
of computational systems which, by taking on specific responsibilities, exhibit
behaviours that unbiased observers would deem to be creative [12]. This definition
has been carefully refined over the past number of years and as such as few points
should be noted: CC is the study of systems, not merely the artefacts produced;
it considers exhibited behaviour without specifying that a physical artefact must
be created; it refers to the perception of unbiased observers but not specifically
human opinion; finally, the field studies philosophical along with engineering or
technical principles. The definition has been refined in response to the development
of the field of CC over the past decade. However, this definition is still circular in
manner—CC is defined in terms of behaviour of a computational system deemed to
be creative. Such circularity within a definition is understandable when we consider
that creativity in itself is still such a difficult concept to define. The evaluation of
a CC system is ideally based on the exhibition of novelty, value and intent by the
system. While value and novelty can be attributed to any artefacts produced, the
concept of intent can only be attributed to the system itself—did the system mean
to undertake such behaviour and if so why? Such questions are the most difficult to
address in any system, but intent has been proposed as one of the most important
aspects in evaluating CC systems in recent years [21, 27].

In this chapter we consider the application of GE to the concept of creativity both
in theory and through the examination of two applied systems. As noted throughout
this book, GE is a powerful search algorithm based on the theory of evolution and
natural selection. In considering representation and fitness we propose two music
generation systems and contrast the functionality of both, examining how the GE
approach to the two systems must consider this functionality from the outset. The
following section reviews some previous work in music generation systems that use
various evolutionary strategies before introducing CC and what must be considered
in building a CC system. Section 3 describes the development of the first system
from basic representation through the proposal of a self-adaptive music generation
system. Section 4 proposes a different system that creates live-code for generating
loops in ChucK [52]. Section 5 examines the ongoing issue of evaluation of CC
systems and considers the important aspects of evaluating the systems proposed.
Finally, some conclusions are drawn in Sect. 6.
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2 Evolutionary Computation and Creativity

All evolutionary strategies, whether grammatical or not, solve a given problem
by evolving a population of solutions; for any problem a number of solutions are
created and the ideal solution is found through an iterative, stochastic combination
of these solutions. This is well-suited to creative domains where one best or optimal
solution may not exist. Could we ever define the best piece of art ever to be made?
Such a question is frivolous, largely because it is subjective: people have differing
opinions as to what is the ‘best art’. Hence in artistic and aesthetic domains there
are many local optima, and most likely no single global optimum. In this section we
first consider EC as it has been applied to traditionally creative problems, before
reviewing the various types of creativity and what should be considered before
attempting to design any computational CC system.

2.1 Evolutionary Music

A variety of evolutionary strategies or methods have been applied to algorithmic
music composition over the years. One of the most well-known systems, GenJam
[1], employed a Genetic Algorithm (GA) to evolve jazz solos from pre-generated
MIDI sequences. This has been developed into a real-time, interactive system that
has been used in live performances in mainstream venues [2]. Genetic Programming
(GP) has been used to recursively describe binary trees as genetic representation in
evolving musical scores. The recursive mechanism of this representation allowed
the generation of expressive performances and gestures along with the musical
notation [14]. A wide range of evolutionary approaches to music generation and
music composition are discussed throughout [39]. More recently, adapted GAs
have been used with local search methods to investigate human virtuosity in
composing with unfigured bass [40] and with non-dominated sorting in a multi-
component generative music system that could generate chords, melodies and an
accompaniment in a multi-objective system with two populations that are feasible
(individuals which satisfy given constraints) and infeasible (those that violate given
constraints) [45].

Grammars have been used in the description and generation of music for a
number of years. A Generative Theory of Tonal Music (GTTM) [31] is a ground-
breaking work that attempted to define the factors which underlie musical perception
and lead to the realisation of musical order. GTTM was created as a musical analogy
to Chomskian linguistics in that everything is based on a common fundamental
grammar and that all tonal music can be explained as a hierarchical structure based
on this grammar. While GTTM is useful as an analysis tool, it has not been applied
to grammatical music generation. The use of grammars in systems for generating
more general music (tonal or otherwise) was discussed in [38]. In recent years,
grammars were used to augment live coding in creating music with Tidal [23].
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The first system to specifically use GE was proposed in [16]. In this paper GE
generated melodies for a specific processor, although the melodies produced were
not discussed. GE has been implemented for composing short melodies in [43].
From four experimental setups of varying fitness functions and grammars they
determined that users preferred melodies created with a structured grammar. GE
was again employed for musical composition using the Wii remote for a generative,
virtual system entitled Jive [48]. This system interactively modified a combination
of piece-wise linear sequences to create melodic pieces of musical interest.

The above focus is on previous EC applications to music composition as it is
evolutionary methods proposed in this chapter. However many other computing and
machine learning methods such as Hidden Markov Models [42] and recurrent neural
networks [11] have been applied to autonomous music generation. A comprehensive
review of other computational methods applied to music composition can be found
in [20].

2.2 Other Applications

The above review concentrates on musical applications, as two musical systems are
described later in this chapter, but there have been many other creative applications
of EC. Visual art in particular has been popular as a creative domain studied
within the field of EC. Interactive fitness measures of visual art is much quicker
and hence cheaper and easier to carry out than it is with music. Similarly visual
results are easier to show in printed form. As such there have been many studies
in visual art [32], but also in engineering such as in truss design [19], structural
design [28] or fashion [37] which can use visual representations. EC has also been
applied to numerous studies that use Natural Language Processing (NLP) in their
representation such as in poetry creation in PoeTRYMe [41].

When considering a ‘creative’ application, one would be forgiven for immedi-
ately thinking of an aesthetic process such as music or art. Many early studies and
discussions on creativity, however, use mathematical, scientific or logical examples
to illustrate the concept. Margaret Boden’s foundational book [4] discusses Kekule’s
discovery of the benzene ring at length as a creative discovery and proposes
the idea of a ‘necklace game’ as a logical game for children that encourages
creative reasoning. Creativity is not limited to aesthetic domains, but is relevant and
observable in many actions requiring thought, reasoning or intelligence. Despite
this importance of general creativity and creative thought over the aesthetic output,
a distinct lack of work considering logical problems has been noted in recent work
considered to be Computationally Creative [34].
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2.3 Types of Creativity

Whether or not computers can genuinely exhibit creativity is still a hotly debated
topic. Much research within the field of CC is centred on the philosophical question
of how to define creativity and how it could be shown that a computer is capable
of being creative. The problem with the definition of CC given in Sect. 1 is that it
defines computational creativity in terms of being creative, while ‘creative’ itself
is still such a difficult concept to define. It is accepted that there are two types of
creativity: Historical (H) Creativity and Psychological (P) Creativity [5]. Ideas that
are novel to the individual who generated it are considered P-Creative, whereas
ideas that are novel to the world, that no-one has considered before are said to be H-
Creative. By this reasoning H-Creativity is a special case of P-Creativity. Although
it may be tempting to concentrate on systems that can generate H-creative artefacts,
it is P-Creativity that is of most interest to researchers. Focussing on the general
concept (P-Creative) rather than impressive results (H-Creative) is the best method
towards understanding the underlying nature of general creativity.

Boden has proposed three different types of creativity: combinational, explo-
rational and transformational. She suggests that computers may display creativity in
one of three ways [4]:

• In combining novel ideas;
• In exploring the limits of conceptual space;
• In the transformation of established ideas that enable the emergence of new or

unknown ideas.

These three processes can be considered analogous to the operation of grammar-
based EC methods such as GE. The combination of ideas can be likened to the
crossover operator, while the mutation operator is a more explorational method for
searching within any given search space. The grammars used in GE, and other
grammar-based EC systems, allow the mapping or transformation of information
from one domain to another. The combination of all three processes indicates that
GE would appear to be an appropriate approach to problem solving in any creative
domain.

2.4 Designing a System

As the field of CC has developed, many systems that tackle creative problems
with varying degree of autonomy have begun to emerge. Whether a system can
be considered to show creativity rather than mere generation has become a hotly
debated topic in CC research [50]. For a system to be considered truly autonomously
creative, rather than generative, it must exhibit behaviour that displays novelty,
value and intentionality. While novelty and value can generally be attributed to
the artefact created by the system, intent lies within the behaviour of the system
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itself. The problem of intent is intrinsic to the autonomy of the system; if the system
is to have created something itself, it must have intended to create it and hence
must have had reason to create it. This idea of ‘Addressing the Why’ by looking
at intent in CC systems has been considered in [21] whereby it was found that the
case-studies considered could not satisfactorily answer the why? due to a lack of
intrinsic goal-ownership. The goal of intent has been identified as one of the most
important aspects of building a CC system [51]. In this study a systematic process is
proposed for designing a CC system based on domain, representation, knowledge-
base, aesthetic, generation and both genotypic and phenotypic evaluation. All steps
may not be relevant to every type of system, but this does offer a systematic starting
point for anyone approaching the field.

As noted throughout this book, GE is an evolutionary strategy whereby individu-
als are mapped to their meaningful domain using a grammar and evolved according
to a fitness measure. Hence the grammar controls the representation and the fitness
measure controls the selection of individuals. These are the key two elements in
designing a GE system for music generation: how do we represent ‘music’ and
how do we measure the ‘goodness’ of that music. The representation of music is a
complicated issue; what do we mean by music?

It has been argued that there is in fact no such thing as music but only our
perception of the concept [54]:

‘Music, in its own right, doesn’t exist’

This argument states that when we talk about ‘music’ what we are actually referring
to is a specific representation of music such as an audio recording, a live show or a
musical score. We perceive these objects as music through our brains’ interpretation
of them. By this reasoning, music only truly exists in our minds. Although this
may be a philosophical stance, it is an important one to consider from the outset
when trying to establish how to represent music in a computational system. Music
can be represented by computers digitally, for instance in .wav or .mp3 format,
but such representations are very large and perceptually meaningless. Hence many
systems represent music through MIDI values, score notation, chord progressions
or some other specific language. It is philosophically debatable as to whether or
not such systems actually produce music at all. A system that produces musical
scores can only be read by someone who can read music and can only be heard
if someone plays said music. Furthermore, regardless of the representation, there
are many varieties in which systems can create music. Systems may be intended to
create novel melody lines or responses to given melodies, accompaniments to solos,
chord progressions, ornamentation, soundscapes or any other variation of what we
deem music. This point is not to debunk the algorithmic composition of music but to
ensure that the programmer understands their own representation and its limitations.
In computational musical systems, it is more appropriate to consider all systems
to be working in the musical domain, rather than assuming there is one type of
representation of music that must be used.

GE offers an approach to this as the grammar is developed by the programmer
to create a meaningful solution in the problem domain—in this case a pre-defined
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musical domain. To illustrate musical use of GE we describe the development
of two distinct systems. Both systems are implemented in Python using PonyGE
to generate music, but with differing grammars resulting in different musical
representation. The first system uses a grammar to create short Musical Instrument
Digital Interface (MIDI) messages whereas the second creates individual files that
can be looped in the Live-coding language ChucK. As will be discussed later, the
two representations lead to a different focus and different level of musical creativity
in each system.

3 Case Study: The Composing Pony

The first system, developed over a number of experiments, we have come to refer
to as The Composing Pony. Implemented in PonyGE, all versions of this system
create short individual MIDI files that can be played through any digital sequencer,
for example GarageBand. MIDI messages can be played as any specified MIDI
instrument, or used to trigger audio samples. For these experiments we use a MIDI
piano sound, designing a grammar that can specify pitch and duration for the
individual notes.

3.1 Grammar

The Composing Pony uses a context free grammar in Backus-Naur Form (BNF) to
create short melodies from the given genome by mapping to a series of notes by
specifying a pitch, octave and duration. A level of musicality is introduced to the
grammar by allowing not just individual notes but by also including chords, turns
and arpeggios. The grammar is based on the following:

<piece> ::= <event>|<piece><event>|<piece><event><event>
|<piece><event><event><event>

<event> ::= <style>,<oct>,<pitch>,<dur>,

<style> ::= <note>|<note>|<note>|<note>|<note>|<note>|<note>
|<chord>|<chord>|<chord>|<chord>|<turn>|<arp>

<chord> ::= <int>,0,0|<int>,<int>,0 |12,0,0|<int>,0,0|<int>,0,0
|<int>,0,0 |<int>,<int>,<int>

<turn> ::= <dir>,<len>,<dir>,<len>,<stepD>
<arp> ::= <dir>,<int>,<dir>,<int>,<ArpDur>

<int> ::= 3|4|5|7|5|5|7|7
<len> ::= <step>|<step>,<step>|<step>,<step>,<step>

|<step>,<step>,<step>|<step>,<step>,<step>,<step>
<dir> ::= up|down
<step> ::= 1|1|1|1|1|2|2|2|2|2|2|2|2|3
<stepD> ::= 1|2|2|2|2|2|2|4|4|4|4|4|4
<ArpDur> ::= 2|2|2|4|4|4|4|4|8|8
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<oct> ::= 3|4|4|4|4|5|5|5|5|6|6
<pitch> ::= 0|1|2|3|4|5|6|7|8|9|10|11
<dur> ::= 1|1|1|2|2|2|4|4|4|8|8|16|16|32

This creates an individual (the <piece>) that consists of a number of musical
events. Each of these events can be made up of either an individual note, a chord, a
turn (series of notes with small intervals) or an arpeggio (series of notes with larger
intervals). Each note is completely described by its given octave number, pitch and
duration. A chord is described by these values plus the interval value from the root
to each of the upper notes. Turns and arpeggios are described using the number of
steps, the step-size and the direction of flow of the steps. Interval sizes and step-
sizes can be altered to favour harmonic or dissonant relationships, thus changing the
likely harmonicity of the resulting melodies. This grammar results in a population
of individuals whose phenotypes can be played as MIDI messages through any
sequencer. The evolutionary search through such a space is then determined by the
fitness measure: how should we measure if one of these melodies is ‘better’ than
another?

3.2 The Problem of Fitness

Deciphering the merit of a monophonic melody such as those created by this system
is far from simple; we must obtain an objective measure from a subjective decision.
Using a human to give a fitness measure, known as Interactive EC, would give a
subjective measure but this is highly costly and time consuming and simultaneously
retracts from the automation of the system. Some music generation EC studies have
created populations whereby each individual is known to be highly musical, thus
allowing a random fitness measure as in GenDash [53] or using the whole population
in the one composition [2, 17]. Ideally, however, an EC system would encompass an
objective measure of what results in a strong or weak melody. The various attributes
used in the evaluation of melodies based on pitch and rhythm measurements have
been considered in recent years [15]. It was concluded that previous approaches to
formalise a fitness function for melodies have not comprehensively incorporated all
measures.

As an initial approach to this problem we considered the level of tonality within
the given melody. As found through GTTM, western tonal music contains a strong
sense of tonal hierarchy. This is based on the major or minor tonal scale whereby
certain tones are given preference and repeated throughout the piece. Variations on
such hierarchies across other cultural music indicates that an expected tonality is
more reliant on perception and cognition than on an innate acoustic relationship
[30]. Tonal Induction [29], whereby a listener identifies the key of given music, has
been shown to be perceivable by Westerners in both Western and Indian music [9].
This implies that there is no ‘ideal’ tonality, but that a preferred tonal hierarchy could
be induced by a system with no a priori knowledge and hence no pitch expectations.
Similarly the distributional view of key identification [49] implies that a perceived
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pitch key may be induced by enforcing a repetition of a given set of pitches. Such
a relationship is used as the basis of the fitness measure within our system. As can
be noted from the above grammar the <pitch> line allows any degree of the scale
with equal likelihood. Such a line will enforce 12-tone music rather than music that
fits to any typical Western tonal key. To create a tonal-based fitness measure, we
consider the relationship between the pitches present in the given melody.

An initial fitness is defined to ensure the melody is of acceptable length:

fitnessinitial = (Len− 200)2 + 1 (1)

where Len is the length, in integer values, of the current phenotype. Due to the
variations in note values permitted through the grammar, this initial length value
of 200 allows much variation in the duration of the resultant melody. This length
was chosen experimentally to result in phenotypes long enough to produce music of
acceptable duration while ensuring it did not continue indefinitely. The addition of
the constant 1 is to prevent a fitness of zero as this initial fitness is now adjusted by
multiplication according to the statistical relationship between the pitches.

For an emergent tonality, one pitch should be the most frequently played within
the melody, with an unequal distribution of the remaining pitches. In the fitness
the primary is defined as the pitch value with most instances and the secondary as
that with the second highest number of instances. Thus for a good (low) fitness
the number of primary pitches must be significantly higher than the number of
secondary pitches. We define the number of instances of the seven most frequently
played notes as Top7 and the number of instances of the top nine most frequently
played notes as Top9.

The fitness is multiplied by 1.3 if any of the following inequalities hold:

# instances of primary
# instances of secondary

< 1.3 (2)

Top7
Total number of played notes

< 0.75 (3)

Top9
Total number of played notes

< 0.95 (4)

This forces the primary tone to have significantly more instances than the secondary
and encourages most of the notes played to be within the top seven or top nine
notes. In uniformed pitch-distributed music these Top7 and Top9 ratios would work
out to be 0.58 and 0.75 respectively whereas in Western tonal music all notes, bar
accidentals, would be contained in the top seven pitches. These limits of 0.75 and
0.95 result in more tonality than 12 tone serialism but will not create a melody with
typical Western tonality. It must be noted that this fitness measure is reliant only
on a statistical measure of the frequency of notes within the melody; the fitness
is not related to the order in which notes are played or any temporal relationship



350 R. Loughran

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 6 11 16 21 26 31 36 41 46 51

Lo
g 10

(F
itn

es
s)

Generations

Average Fit

Best Fit

Fig. 1 Best and average fitness of melodies evolved over 50 generations, averaged over 30 runs

between one note and the next. The temporal arrangement of notes emerges from
the grammar through the presence of note events.

A series of 30 experiments were run with a population of 100 for 50 generations.
For these experiments all other parameters were left to the default settings in
PonyGE: the mutation coefficient was set to 0.01, crossover was set to 0.7 and there
was an elite size of 1. In comparison to many EC studies, these experimental runs
were very short, taking less than 30 s to complete. A plot of the average and best
fitnesses of the runs over 50 generations can be seen in Fig. 1. This clearly shows
a rapid drop in fitness in early generations, as the initial fitness based on length is
reached, followed by a slower tapering off of fitness as the statistical measures are
satisfied.

As the grammar can produce melodies containing runs and turns of notes,
a number of the resultant melodies can immediately (from generation 0) sound
somewhat musical. Evolution searches towards the ideal statistical relationships
given in the fitness function. As noted, however, these statistical measures do not
affect the temporal (horizontal) arrangement of the notes. This fitness function
cannot objectively measure pleasantness or ‘goodness’ of the music; it merely
specifies a numerical goal according to which the space should be searched. A such,
it is possible to have a musical sounding individual from the initial population which
does not survive through subsequent generations. There is no direct link between
this measure of fitness and the more abstract concept of ‘musicality’; the concept of
musical merit or fitness is much more complex than this.

A single individual phenotype is short, resulting in a short melody snippet. To
create longer melodic compositions, the top four individuals were concatenated
together. This makes use of the population aspect of evolution: instead of producing
one single good result, a run has produced a population of results. As evolution
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converges towards a solution, the top few individuals will have similarly good
fitness values. This results in a number of the top melodies being similar but
not identical. Concatenating similar melodies together leads to the emergence of
melodic themes that is audible in a number of the resultant compositions. This
variation on a theme concept is highly suitable for musical works. A selection of
melodies created using this system are available to listen at:

https://soundcloud.com/user-529879178/sets/composingponymelodies.

Melodies 1–3 are all final generation results from the above system. While it
may be possible to have a musical individual at generation 0, as explained above,
longer compositions that exhibit the emergence of a theme is only possible after
many generations. MelodyAccompany 1 and 2 were created by an extended version
of this system that generates accompaniments [36] and MelodyCritic 1 and 2 were
created by the self-adaptive Critic system described in the following section.

3.3 Self-Adaptive System

The above system successfully uses GE to evolve musical phrases, but its search
method is based on a pre-defined fitness metric. While this is justifiable from the
tonality perspective as defined above, this does not actually constitute a subjective
measure. Subjectivity implies that the choice of a given individual is due to the
preference of the entity making the decision. As humans we justify our preferences
by stating it’s what we ‘like’ but how does that translate to the preference exhibited
by an autonomous agent or algorithm?

Many computational compositional systems such as those reviewed in Sect. 2 use
a pre-defined idea of what constitutes a successful composition, according to a given
style or a series of rules. Systems learn these rules or abstract patterns from styles
and create music that conforms to what it has learned. While such systems have
been successful, they are ultimately confined to conform to music already created—
by humans. With the current computational possibilities, an alternative and possibly
more interesting question may lie in the pursuit of creations that do not conform to
what has been seen before, but which can emerge from a self-adaptive system. The
purpose of such a system would not be to create music to appease our current tastes,
but to explore the emergence of a new preference, one that is wholly dependent on
the workings of the system, rather than outside influence.

For an EC compositional system to be considered autonomously creative in this
instance, the fitness function should be meaningful (i.e. not merely random) and
not pre-defined to conform to previously decided musical rules, human preferences
or style. Ideally, the fitness function should respond or adapt to the system in an
explainable manner. It has been argued that in creative EC systems there must be a
logical and explainable method for assigning fitness even if this fitness assignment is
not what a human would choose [13]. Instead of assuming that the human ideal must
be the computational ideal in a creative task, they developed a preference function
by measuring qualities such as specificity, transivity and reflexivity to determine

https://soundcloud.com/user-529879178/sets/composingponymelodies
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choice. These were taken as measures of the ordering of the individuals, rather than
aspects of the individuals on their own. This function may not agree with what a
human may choose but, more importantly, it showed a consistency in agreeing with
itself. We developed a cyclical development of the Composing Pony to explore this
possibility of creating a fitness measure that responded to the system itself.

This system creates a ‘Critic’ that can give a numerical output of one of the given
melodies and thus be used as the fitness measure for a consequent EC run in creating
a new melody. Evolving the Critic enables the creation of one that constitutes a
justifiable preference measure, thus avoiding the problem of creating a subjective
fitness measure for evolving subsequent music. This compositional system consists
of three evolutionary phases:

• The evolution of an initial musical corpus;
• The evolution of a best Critic that conforms to the Critic population’s preference

of melodies;
• The use of this best Critic as the fitness function in evolving a new melody,

which then replaces one melody in the original corpus.

The corpus consists of 40 melodies evolved using the Composing Pony as
described above. These melodies can be played as each note has a given pitch and
duration. For representation in the second phase, each melody is reduced to the
number of times each degree of the scale and each note duration is played. Thus each
melody is reduced to 18 distinct values—12 for each degree of the scale followed
by 6 allowed note durations. These values can then be used with the Critic grammar
shown below.

<expr> ::= <O><T1><O><T2><O><T3><O><T4>
<O><T5><O><T6><O><T7><O><T8><O><T9>
<O><T10><O><T11><O><T12><O><D1><O>
<D2><O><D4><O><D8><O><D16><O><D32>

<O> ::= <op><scalar>
<op> ::= + | - | *
<scalar> ::= 1 | 2 | 3 | 4 | 5

This grammar takes a linear combination of the 18 distinct melodic values
and returns a scalar result. Each individual in the (Critic) population thus gives
a numerical output for each of the 40 melodies in the corpus. Individually, this
output has no meaning for each melody—but it allows the melodies to be ordered
numerically. In this system, we attribute the concept of preference to this output.
The melodies are thus ‘ranked’ 1–40 according to this numerical result by each
Critic. In this manner, each Critic within the population is afforded its own opinion
(i.e. its ranking) as to which melodies it prefers. These rankings are then averaged
across all Critics within the population resulting in the averaged ranking among
the (Critic) population. This averaged overall ranking of all 40 melodies is taken
to be the consensus of the ranking of the melodies among the Critic population.
The fitness of each individual Critic is then calculated according to its Kendall-
Rank Correlation with this consensus. Selection, mutation and crossover are then
performed in a typical EC with this Rank fitness (or preference) measure to evolve
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Fig. 2 Flow diagram of the cyclical Critic compositional system

one best Critic. Using this method, Critic individuals that rank melodies similar to
the majority obtain better fitness, hence the idea of conforming to the population is
encouraged throughout the evolution.

This best Critic outputs a numerical value for any of the melodies with the
representation used with the Composing Pony. Thus, this can be incorporated as
the fitness function in a new evolutionary run. In this manner, we have created a
fitness measure that offers a meaningful and defendable measure of the music but is
completely independent from the human designer. Furthermore, the melody created
in the final phase can be used to replace one of the melodies in the corpus, thus
creating a new Critic and the cycle repeats. In this manner, the system has become
a self-adaptive complex system that can continue to run and create new melodies
without user intervention. A graphical overview of the entire system is shown in
Fig. 2.

Each of the evolutionary phases within the system was run with a population of
size 100 over 50 generations using tournament selection of tournament size 2. Again
all other parameters were set to those as in the Composing Pony described above.
This complete cycle was repeated 40 times, with one melody from the original
corpus being replaced by a newly generated melody in each cycle; after 40 cycles
the system is running purely on melodies it has created itself. From listening to
the melodies created by the system, it must be noted that there is no discernible
‘improvement’ in the melodies from the initial population to those created after
many cycles. The melodies available through SoundCloud display the typical range
of runs and chords audible in the earlier Composing Pony melodies. This is to be
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Fig. 3 Diversity of melody
corpus over 40 complete
cycles of the system
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expected—at no point did we instruct the system to improve the melodies or inform
it as to what constitutes a good melody. The purpose of this experiment was not to
create better melodies but rather to examine a way of encouraging an autonomous
system to determine its own preference for one melody over another through self-
organisation. Over successive cycles this system becomes subjected to and develops
responses on melodies created by itself, hence becoming more self-adaptive as the
cycles repeat.

While we cannot expect to hear an expected different in the quality of the
individual melodies, we can consider the change in the corpus of melodies as the
corpus is replaced by those generated by the system. To do this, the diversity of
the melody corpus was monitored as the corpus was re-filled by a newly evolved
melody in each cycle. The diversity of the corpus was measured as the sum of
the Levenshtein distances between the representation of each pair of melodies. The
change in this diversity across 40 full evolutionary cycles is shown in Fig. 3. This
shows that for approximately 10 evolutionary cycles, the diversity does not change
dramatically from that of the initial corpus, but after 15 cycles, as the corpus is filled
by newly evolved melodies there is a steady decrease in this measured diversity.
The decrease is small, but nevertheless displays a definite trend. This shows that
the process is having a directed effect on the melodies being produced, with newer
melodies showing less diversity as they are created by the increasingly self-adaptive
system.

This Composing Pony can create musical melodies but the resultant form is
limited. Variations of the system has been considered that implement melodies with
accompaniment [36], or arrange melody segments according to melodic distance
[35] but regardless of the fitness measure used, the resultant melodies are heavily
dependent on and limited by the grammar used. We discuss the implications of
this in regards to evaluation of the system below in Sect. 5. The second proposed
system again uses GE to create music but by developing a different grammar, with
a different focus, creates music of a completely different form.
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4 Case Study: Evolving Live Code

The second system we propose produces continuous or looped music using the live-
coding language ChucK [52]. By the using the on-the-fly command programming
capabilities of ChucK, shreds (each written as an individual file) can be added to a
ChucK Virtual Machine (VM) by the user at the command line. The ChucK code
is created through program synthesis using GE. A series of grammars that generate
ChucK code for new shreds are presented. Each of these shreds can then be added
or removed to the running VM by the programmer. In contrast to The Composing
Pony presented above, this system focusses on representation and production of
music, rather than in developing autonomous fitness. The generality of the system
is dependent on the grammars used. We first describe creating highly specified files,
each for a different instrument before considering generalising the grammars to
enable a more powerful system.

4.1 Live Coding

Live coding is a practice where software that creates music (and sometimes visuals)
is written and manipulated in real-time as part of a live performance [7]. Typically
in a performance, the code is made visible on large screens, thus providing a more
transparent experience to the audience. This leads to the possibility of glitches
(or all-out crashes) within the software during the performance, the re-working or
patching of which is part of the skill and nuance displayed by the composer [10].
While a number of specific coding environments have been developed specifically
for live coding music (for e.g Supercollider, PureData, MaxMSP), live coding can be
implemented in any computing language. The proposed system is developed using
ChucK, a popular, strongly timed live coding programming language [52].

We propose introducing GE to generate live code in real time as a tool to help the
performer. Instead of starting from scratch, the performer could run this GEChucK
to create a number of initial ChucK files. They can then modify or remove these files
as they see fit, saving the ones they like and re-running GE to create more in order to
develop and enhance the live performance. It is important to note that this is not an
Interactive GE system; the performer is not acting as the fitness function within the
GE run but is instead evaluating the results at the end of each run, using the results
they like and discarding those they do not wish to use. As such, we consider this to
be a co-creative system: a system whereby the resultant creativity can be attributed
to both performer and algorithm.
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4.2 ChucK

ChucK is a strongly typed and strongly timed concurrent audio and multi-media
programming language. It is strongly typed, although not statically typed, it is
dynamic in that changes to the type system can take place (in a well-defined manner)
at runtime. This dynamic aspect forms the basis for on-the-fly programming. It is
compiled into virtual instructions which are immediately run on the ChucK VM.
ChucK is strongly timed meaning that time is fundamentally embedded into the
language—time and duration are native types. The keyword now is reserved to
indicate the current logical point in time and time is progressed from now according
to durations specified of type dur.

4.3 Instrument Grammars

The initial GEChucK system is based on an adaptation of the on-the-fly program-
ming synchronisation examples provided by the creators of ChucK, Perry Cook
and Ge Wang, available at http://chuck.cs.princeton.edu/doc/examples/. This system
incorporates individual instrument grammars that can re-create a valid variation of
each of the provided .ck files. GE was run independently multiple times, each time
using a specific instrument grammar to create the corresponding instrument .ck file.
Thus each GE run creates six individuals files. These can then be added or removed
as ChucK shreds from the VM by the programmer at the command line.

Six distinct grammars were created, each of which is run with GE to create a
distinct instrument that can be added as a ChucK shred. Each grammar begins with
a code block to initialise the instrument, followed by a continuous loop.

<return> ::= <pre> L <code>

This states that the result will be comprised of some pre-code specified in <pre>
followed by the body of code <code> and separated by the flag ‘L’. For example
in the first grammar, which creates the kick drum beat:

<pre> ::= .5::second => dur T;
T - (now % T) => now;
SndBuf buf => Gain g => dac;
me.dir() + "data/kick.wav" => buf.read;
.5 => g.gain;

This section of the grammar reads the sound file into the buffer, sets the gain
and synchronises the resultant sounds to a period. In this version, this is currently
hard-coded through the grammar as there are no non-terminals for GE to choose
between. The remainder of the kick drum grammar consists of:

http://chuck.cs.princeton.edu/doc/examples/
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<code> ::= <line1> ; <line2> ; <line3> ;
<line1> ::= 0 => buf.pos
<line2> ::= <gain> => buf.gain
<gain> ::= 0.8 | 0.82 | 0.84 | 0.86 | 0.88 | 0.9
<line3> ::= <dur>::T => now
<dur> ::= 0.5 | 1 | 1

This grammar returns three lines of code. <line1> sets the play position to
the beginning. <line2> offers a choice for the given gain and <line3> allows
options for the duration, by advancing time. Note that the options for the <gain>
are each equally likely, but there is a 2:1 bias towards advancing time by 1 rather
than 0.5. Such biases can be introduced to the grammar as a design feature by the
programmer. The grammars to create files controlling the snare, snare-hop, hi-hat
and open hi-hat are based on variations of the grammar above.

The melodic content within these example files is created using Sin oscillators
with a specified scale structure. For example, Grammar5 consists of:

<return> ::= <pre> L <code>
<pre> ::= .5::second => dur T;

T - (now % T) => now;
SinOsc s => dac;
.25 => s.gain;

<scale>@=> int scale[];
<scale> ::= [0,2,4,7,9]|[1,3,8,9,11]|[0,1,2,3,4]|[4,5,7,10,11]

<code> ::= <line1> ; <line2> ; <line3> ;
<line1> ::= scale[Math.random2(0,4)] => float freq
<line2> ::= Std.mtof(21.0 + (Math.random2(0,3)*12 + freq))

=> s.freq
<line3> ::= <dur>::T => now
<dur> ::= 0.25 | 0.5

The <scale> options in such a grammar dictates the degrees of the scale
that are playable by the evolved instrument. A Sin oscillator based on mul-
tiples of [0,2,4,7,9] for instance would be pleasantly harmonic, whereas
[0,1,2,3,4] would lead to more dissident intervals created by the instrument.

These grammars are highly specified and quite limited. Each grammar creates a
ChucK file of a specific instrument, but the choices offered within the grammar are
few. While this may result in very little variation within the resultant phenotypes,
it does ensure that the code generated is valid and error free. Subsequently, all
individuals produce valid ChucK code. Ideally, we would like to evolve these
according to which creates the ‘best’ music. But, as we discovered in developing
The Composing Pony above, deciding which is the ‘best’ is a very complicated
process. Furthermore, immediately generating a perfect loop is not the purpose of
Live-coding. Live-coding is an interactive process, where the performer performs
edits in a live environment. Hence we use the GEChucK system with a random
fitness measure. Each final population will always result in valid code, but the
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performer will curate and modify the individuals they like. This initial system will
create six .ck files every time the GE is run—four percussive and two melodic files.
The performer can then play these files and keep or edit the ones they like in real
time as is typical in a live-coding environment. The system can be re-run by the
performer multiple times as they manage and edit their live performance. A video
demonstration of the code being run can be found at https://youtu.be/GfFqIzYtDe8.

4.4 Generalised Grammar

To create a more powerful system, the grammars should be able to generalise to
create more than one specific instrument. The level of generalisation would depend
on the goals of the given run. The percussive grammar shown above could be easily
amended to include a choice of the drum sound rather than hard-coding a specific
sound. For instance:

me.dir() + <filename> => buf.read;
<filename> ::= "data/kick.wav"|"data/snare.wav"|"data/hhat.wav"

Similarly, there could be more options for the type of oscillators offered in the
melodic grammars, instead of or along with the choices in the degree of scales. The
following offers the possibility of either a sine, triangle or square wave oscillators:

<OscType> s => dac;
<OscType> ::= SinOsc | TriOsc | SqrOsc

The durations can also be manipulated in the grammars through the progression
of time, if this is desired. Selecting a kick sound over a hi-hat, at least in a
realistic setting, would most likely require a different duration between hits (the
hi-hat being struck more rapidly that the kick drum). Such a relationship could be
paired up within the grammar, but restrictions such as this limit the output of the
system to what is predictable rather than taking advantage of the computational and
explorative nature of the approach. The grammars will get more complex as more
options for generators or sounds files are offered that can be played by the resultant
code. As the grammars increase in complexity it is necessary to decide what level
of constraint should be enforced on the possibilities of what is to be produced.
Should the music be realistically playable or not constrained to such limits? Should
the grammars be specific to certain instruments, enabling the user to intentionally
choose what type of instrument they wish to hear, or should they be more general
to result in a more ad-hoc, experimental performance? Such questions need to be
addressed to design a meaningful, coherent system with which the end user would
want to perform.

https://youtu.be/GfFqIzYtDe8
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ChucK is a powerful language that can achieve much more variety than these
instrument grammars can produce. As a programming language it offers all the
typical operators, types and control structures you would expect from any high-level
language. ChucK is object-oriented with a number of built in classes and the ability
to create custom classes of specific types. Furthermore ChucK is able to run many
processes or functions concurrently. A ChucKian process is called a shred. Creating
and adding a new shred to the VM is called sporking. As ChucK is strongly-timed,
functions or shreds can be called or sporked at any given time making parallel
processes easy to manage. ChucK also has the capability to undertake many types
of audio processing such as fourier analysis, filters and manipulating unit generators
as well as dealing with MIDI or OSC events. Creating one BNF grammar that could
utilise all of the functionality of ChucK would be a huge undertaking. Any one
grammar could not automatically generate phenotypes that result in valid ChucK
code. Using GE to generalise to explore the capabilities of ChucK would require a
much more formalised method of measuring fitness.

4.5 Fitness Measure

This system is currently implemented with a random fitness measure. Random
fitness is an alien concept to many EC researchers as it appears that there is no
goal; a random fitness leads to no direction within the search. However, in creative
applications such as GenDash [53] these have be used quite successfully. Such
methods take advantage of the exploratory aspects of EC. Undirected search can
explore the entire search space. However, this can only be employed when the space
is highly constrained—so much so that any result is at least valid and arguably as
useful as any other individual in the population. This can be used with the above
system as the grammar only generates valid code, but it is undesirable as no directed
search and hence no true evolution is taking place, rather it is akin to genetic drift.
The only evaluation is taking place by the programmer after evolution has occurred.
In effect, an interactive fitness measuring element (the human participant) of the
experiment has been created but, rather than being used for search, instead performs
evaluation between evolutionary runs. This is useful as an application to a live-
coder; instead of starting from scratch the performer has a number of pre-made
code snippets to start with and edit. But as an EC researcher, it feels as though we
are not taking advantage of the power of the algorithm.

To enable more powerful evolution, the system should incorporate some mean-
ingful measure of fitness. As this system creates code that creates music there are
two fundamental aspects that may be measured: the code or the music. To develop
an autonomous creative system, the system should ideally measure some aspect
of the music created, but as has been discussed this is non-trivial. How could a
function measure the fitness of a given loop? As the capabilities of ChucK are
so broad, must we design grammars for specific instrument types and pair them
with purpose created fitness measures, such as drum grammars with drum fitness
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functions and Sin generator grammars with Sin generator fitness function? Such a
system may appear to make sense but inevitably this would lead to a deterministic
system where the ‘best’ percussion and melodic content is pre-decided leaving no
justifiable need for evolution. This raises the issue of exploration versus exploitation
in computationally creative systems: in a complex system (such as GE combined
with the full capabilities of ChucK) we must limit the space to have control and
yet include enough freedom of exploration to allow the emergence of creativity.
Combining individual grammars and fitness measures is unlikely to lead to such a
balance.

Instead, in the next phase of this system, we propose to design a fitness measure
that encourages well-written, meaningful code. EC has a long history of use for
program synthesis and is becoming an increasingly popular approach in Software
Engineering [22]. By developing fitness measures that are specifically designed to
optimise ChucK code, GE would perform more meaningful evolution in optimising
the code to offer the user. A variety of grammars would be developed so that the user
could choose the function of the code they require—be it a unit generator, percussive
element or audio effect—which would be functional from the start but which they
could amend in a live environment to complement their performance. Such a system
would be beneficial both to novices in ChucK who desire correctly compiled code
and to more experienced users who wish to enhance the live-coding experience.

5 Evaluation

The difficulty in defining creativity naturally leads to a resultant difficulty in
evaluating whether or not a computational system is creative. This has led to a
number of authors doing self evaluation, minimal evaluation or no evaluation on
their systems. The lack of evaluation in CC systems has been noted throughout the
development of the field [3, 8, 25] and has led to much debate in the CC community
as to how to evaluate the creativity of a system. The practice of evaluating creativity
in terms of human opinion is nearly always assumed but rarely justified, which could
arguably lead to limitations in the development of such systems [33]. Although some
evaluation systems have been developed and their use is encouraged [26], there is
still an argument that any system deemed to be creative should show intent and
hence must have some level of self-awareness. Such systems are considered to be
meta-creative and to possess creative autonomy [24]. Only through the verification
of creative autonomy can it be stated that creativity is displayed by the system rather
than via an extension of the programmers or users own personal creativity. Of course
it is important to note that the concept of intent is the most philosophical aspect of
creativity and there remains much argument that such a concept could never be
properly achieved, or verified, in any real sense by a machine or computer program
[46, 47].

An attempt to formalise a method of testing for creativity in a computer has been
developed in the form of the Lovelace Test (LT) [6]. The test is named after Ada
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Lovelace who in the 1840s showed remarkable foresight into the possibilities of the
newly invented analytical machine. Lovelace posed that the machine could be used,
not just for mere numerical calculations, but in time would be able to represent
music and art. She further posed that it could be used in the study of creativity,
but maintained that such machines would never be able to be truly creative as they
were incapable of originating anything. Her arguments have been formalised into
the Lovelace Questions [4]:

• Can computational ideas help us understand human creativity?
• Can computers ever do things that appear creative?
• Can computers ever recognise creativity?
• Can computers ever really be creative?

It is the fourth question above that remains the most interesting and controversial
in relation to computers and creativity. The LT has been created as a method to test
for an answer to this question. This test involves an artificial agent A, its output
o and its human architect H. Simply put, the test is passed if H cannot explain
how A produced o. While on the surface the test may seem easy to pass, it actually
poses the problem of intent as we have discussed above. The test does not state that
the programmer cannot merely predict the results—most computational systems
would pass that—but that they cannot explain how the machine produced its results.
Thus the machine must have developed its own reasoning for its actions without the
programmer’s knowledge.

In practice there can be logistical problems in creating creative systems that
focus on intent. Later experiments conducted with the Composing Pony, such as
the self-adaptive system described in Sect. 3 and those described in [35] are based
on developing self-adaptive systems that have minimal influence from the program-
mer, in an effort to prioritise intent over quality of the produced output. Rather
unsurprisingly, these systems do not produce traditionally impressive results from
a human listener perspective. From listening to final generation melodies compared
to those in the first generation, there is not necessarily an audible improvement—
indeed why should there be? The system is not given any requirements to make
‘good’ music. Because of this however, the artefacts produced by such systems can
be underwhelming, making it more difficult to convince the readers, the audience or
even peers of their intrinsic merit. To combat this, evaluation of a creative system
should always consider the purpose of the system and the workings within the
system, rather than being solely based on the artefacts created.

5.1 Identifying the ‘Why?’

The above argument amplifies why it is imperative for researchers to determine
exactly what the purpose of any algorithmic compositional systems they are
developing is from the outset. If a system generates music, the most natural way
to investigate this system is in listening to the generated music. If, as the creator
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of this system, generating generically pleasing music is not your primary aim, it
is important to state and address this. As CC evaluation is so problematic, the
responsibility of explaining the functions and merits of the given system lies entirely
with the programmer or creator of that system. The two systems presented in this
chapter, although both GE music generation systems, result in completely different
music, but also have very different purposes and goals in what they can achieve.

The Composing Pony The main purpose of The Composing Pony is to investigate
self-adaptive fitness in a move towards complete creative autonomy. Listening to the
resultant melodies is interesting, and we invite the reader to do so1 but evaluating
the system on the perceived merit of these melodies does not make sense. Arguably,
the music could be improved by developing different grammars that would conform
to a given style, either by genre or by composer, but such a change would be a result
of the creativity of the programmer not the system. The strength of this system lies
in the autonomy obtained from the self-adaptive fitness measure. This system itself
is unable to create melodies that improve (in any human subjective way) from one
generation to the next. It simply evolves towards a more stable version of its own
autonomous ‘opinion’.

GEChuck The purpose of GEChucK is to augment and complement the users
experience in Live-coding with ChucK. While this should make the produced output
music more interesting, meaningful and suitable for aural evaluation, we must
remember that this is a co-creative system. Any recognised creativity from the
output should be as much, if not more attributed to the performer as to the system.
Ideally this system should be evaluated by users rather than by the audience. Even
though the creativity is not as autonomous in such a system, developing a tool to
augment a live-coding performance to assist the performer in such a way is clearly
a worthwhile study into co-creativity. Typically, audience members at live-coding
events are there as much to appreciate the code as the music, so the evolutionary
generation of the initial code would hold great appeal to such a crowd. Music
generation systems in particular have been recognised as falling somewhere on a
scale between mere generation and creativity. Systems that achieve mere generation
have been defended by the recognition that much music innovation has been
achieved in Musical Metacreation (MuMe) from generative systems focussed on
human-interactive co-creativity [18]. Any music generation system lies somewhere
on a spectrum between pure generation (the artefact is most important) and pure
computational creativity (the behaviour is most important). Meaningful and relevant
evaluation of any system is dependent on where the system lies within such a
spectrum.

Stating that the end result is not at all relevant in a music generation system
is highly controversial, and has a tendency to unnerve people. Such a statement
raises the question that if the music is not written for human enjoyment then who
is the music for? We are not stating that systems such as the Composing Pony are

1https://soundcloud.com/user-529879178/sets/composingponymelodies.

https://soundcloud.com/user-529879178/sets/composingponymelodies
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composing music for themselves or any future autonomous agent to enjoy. The point
we need to emphasise is that a focus on who the music is written for is again a pure
judgement of the final artefact produced—rather than on the behaviour of the agent
that created this music. We would suggest that the question is not to ask who the
music is for but to completely disregard this notion of ‘for’ in an attempt to approach
a more general evaluation of creativity.

6 Conclusion

We have presented a study on applying GE to creativity, both from a theoretical
aspect and by considering two implemented systems. One of the most important
findings from this chapter is that in planning any GE creative experiment, or
indeed any computationally creative experiment, the level of creativity obtainable
from a system is dependent on the manner in which the system operates and the
specific purpose for which it was created. We presented two music compositional
systems based on GE, the Composing Pony and GEChucK. The development
of The Composing Pony was focussed on creating a system that could result in
autonomous creativity. The autonomy was approached through the development of
a self-referential fitness measure that resulted in a complex adaptive system with
no influence from the programmer or user once the system had started. This first
system had a focus on a high level of autonomous creativity. The second system,
GEChucK, had a more user-based co-creative approach to music generation. In
developing grammars to produce valid ChucK code, we described how this system
could be used in a live-coding environment to augment the coding experience for
both the user and audience.

We have discussed the application of GE to musical creativity, but creativity is
not limited to the musical, or any specifically aesthetic, domain. Many of the original
studies in creativity discuss mathematical and scientific examples of creative
thinking. Of the three types of creativity described in Sect. 2—combinational,
explorational and transformational—transformational creativity is said to result in
the highest level of creativity [4, 44]. Boden has stated that the best examples
of, or future possibilities for, achieving transformational creativity involve using
evolutionary techniques [5]. We propose that the grammars employed in applying
GE can enhance that possibility. The development and use of specific grammars
in GE offer the potential to represent and examine problems in any given domain.
Transformational creativity does, however, require more than a mere mapping that
has been pre-defined by the programmer. Only if the system displays a true trans-
formation from one concept to another can it be regarded as creative. Nevertheless,
such grammars could be employed in exploring and representing numerous creative
tasks and problems. The combination of appropriate grammars, the exploration
of evolutionary search and the development of self-adaptive fitness measures are
promising options in progressing towards an understanding and emergence of true
computational creativity.
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Identification of Models for Glucose
Blood Values in Diabetics by
Grammatical Evolution
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Gabriel Kronberger, Stephan M. Winkler, Oscar Garnica,
and Juan Lanchares

Abstract One the most relevant application areas of artificial intelligence and
machine learning in general is medical research. We here focus on research
dedicated to diabetes, a disease that affects a high percentage of the population
worldwide and that is an increasing threat due to the advance of the sedentary life
in the big cities. Most recent studies estimate that it affects about more than 410
million people in the world. In this chapter we discuss a set of techniques based
on GE to obtain mathematical models of the evolution of blood glucose along the
time. These models help diabetic patients to improve the control of blood sugar
levels and thus, improve their quality of life. We summarize some recent works on
data preprocessing and design of grammars that have proven to be valuable in the
identification of prediction models for type 1 diabetics. Furthermore, we explain the
data augmentation method which is used to sample new data sets.

1 Introduction

Diabetes is a group of metabolic diseases where blood glucose levels (also known
as blood sugar) are higher than usual values. This is caused by either a defect in
the secretion, or in the action of insulin, which is essential for the control of blood
glucose levels.
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We distinguish the following three main types of diabetes1:

• Type 1 diabetes (T1DM2): It is an autoimmune disease and is caused by the
immune system mistakenly attacking healthy insulin producers cells (β cells).
The consequence of this attack is a chronic and permanent inability of the
pancreas to generate insulin. Insulin is a hormone that facilitates the access
of glucose into the cells of the human body. T1DM usually manifests in early
childhood and the patient must inject synthetic insulin daily, usually in various
doses and with meals.

• Type 2 diabetes (T2DM): with this type of diabetes, the body does not produce
enough insulin or does not properly use the insulin it produces. People with type
2 diabetes often have to take pills or be treated with insulin. Type 2 diabetes
is the most common form of diabetes (accounting for approximately 90% of
diabetics) and usually occurs in higher ages. In early stages of the evolution of
the illness it can be easily controlled by healthy eating and exercise practices.

• Gestational diabetes (GD): this type of diabetes occurs in some women
during pregnancy. It increases the risk of developing another type of diabetes
for life, especially type 2 diabetes. It also increases the risk of the child
of becoming overweighted and developing diabetes. It is very common in
overweight pregnant and in those who are late mothers. It can also be controlled
with good dietary habits, but sometimes the injection of exogenous insulin is
needed during pregnancy.

Diabetes is a serious illness that requires close monitoring. Except for rare
occasions, having high sugar during fasting phases indicates that the patient is
chronically ill. Anyone with diabetes should eat healthy foods, control their weight
and do physical activity every day. In short, all diabetics must maintain blood
glucose within a range that is usually between 70 and 180 mg/dl [1].

The good news is that it has been shown that a strict glycemic control reduces
complications, improves performance and mitigates medical costs. Glucose level
control is a demanding and difficult task both for patients and their families. To keep
good levels of blood glucose, the patient must have some capacity of prognosis to
know the level of glucose he/she would have after ingesting a certain amount of
food or injecting with a quantity of a insulin of a certain kind. The main objective is
to avoid not only long periods of hyperglycemia (glucose levels > 180 mg/dl), but
also episodes of severe hypoglycemia (glucose levels < 40 mg/dl), that can lead to
death [2].

One of the reasons why it is difficult to control blood glucose level is the lack
of a general model of response to both insulin and other variables, due to the
particularities of each patient. Models published in the literature apply classical

1There are other types of diabetes with lower incidence such as problems caused by genetic defects
affecting insulin action, induced by drugs, or other syndromes.
2T1DM stands for Type 1 Diabetes Mellitus, from Latin mel (“honey”).
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modeling techniques, resulting in linear equations, defined profiles, or models with
a limited set of inputs.

In this chapter we describe an ensemble of novel techniques that involves
obtaining a set of patient models using grammatical evolution (GE), combined
with data preprocessing and other techniques. The main objective of this research
is to obtain models to predict future values of glucose for a given patient as a
function of past values of glucose, insulin and ingestions and future values of
insulin and food. One of the best known applications of genetic programming (GP)
is symbolic regression, and the application of one of its variants, GE, allows us
to obtain models that incorporate non-linear terms [3]. This is the first approach
we describe in this chapter. We show the application of GE to find a custom
regression model that describes and predicts the blood glucose level in a patient
on the basis of previous glucose levels, ingested carbohydrates and injected insulin.
Subsequently we explain how to increase the quality of the input data by means of
data augmentation.

Section 2 explains glucose control strategies. In Sect. 3 we explain the acquisition
and the preprocessing of the data we have used. In Sect. 4 we summarize the
technique presented at [4] for getting more diversity in the data, in Sect. 5 we
explain the motivation of using GE for this complex problem. We also explain the
combination of the models in Sect. 4. Finally we present results in Sect. 6 and draw
conclusions in Sect. 7.

2 Glucose models

Although there are numerous different glucose control strategies, we can differenti-
ate among the following three main categories:

• Traditional therapies are based on manual calculation and administration of
the insulin protocol [5]. The decisions regarding the administration of insulin is
made entirely by the patient following their own experience and the indications
of the medical staff. They need to measure glucose levels and take decisions
on the administration of the multiple insulin manual injections. If the glucose
levels are low, due to excessive exercise or because a wrong administration
of insulin, patients need to eat some sugar. Sometimes it is necessary to
inject additional doses of insulin to correct anomalous high values of glucose.
All these steps should be done by measuring the glucose with a glucometer,
which implies painful punctures, usually in the fingers. Continuous glucose
monitoring systems (CGMS) are very valuable here because they measure the
value of glucose reducing the number of punctures.

• Insulin pump therapies substitute manual injections by the use of continuous
subcutaneous insulin infusion systems (CSIIS), also known as insulin pumps
[6]. Sometimes the use of CSIIS is combined with a CGMS, which helps in
automating some decisions such as stopping the pump in dangerous situations.
The process of deciding the amount of insulin before the meals is done in
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the same way as in the traditional therapies. As this is a supervised process,
the patient still needs to be alert and to detect anomalous glucose situations,
stopping the infusion of insulin or correcting values through the infusion of
glucagon (the hormone that counteracts insulin by raising the glucose levels),
insulin, or eating.

• The use of an artificial pancreas (AP) will be the ideal solution [7]. Unlike other
artificial organs, an AP is a less invasive solution. Its main components are a
CGMS, a set of glucose control algorithms to calculate the amount of insulin
needed, and a CSIIS. An AP can also include bihormonal (insulin/glucagon)
infusion pumps. There have been significant advances in the development of
the AP, still the independence of the patients with AP is not completely safe at
this stage of research because the predictions are not accurate enough for hours
after intakes.

What is common to all the strategies is that blood glucose control in T1DM
patients requires the prognosis, i.e. estimation of future glucose values on the basis
(at least) of the amount of food intakes and/or the injection of insulin and/or
glucagon. The actual level of glucose in the patient’s blood depends on several
factors, some of them intrinsic to its own organism functions. Unfortunately, data
collection is not an easy task, and there is a high number of important variables that,
although influencing the problem, can not be measured directly and non-invasively.
For this reason we formulate the problem in a practical way and limit the variables
that can appear in the expression of the model to those that can be directly and easily
measured.

We will try to find a model of future values of blood glucose based on data we
can collect such as previous glucose, carbohydrates, and insulin values and interpret
this as a symbolic regression (SR) problem. SR tries to obtain a mathematical
expression that explains one or a set of target variables as a white-box function of
input variables. The data used in this chapter was collected from real patients using
a continuous glucose monitoring system (CGMS) during 12 days at a hospital in
Spain.3 We use observations taken every 15 min, up to 1152 measurements for each
patient; the records of the estimated carbohydrate units ingested and the injected
insulin are also available.

Thus, for each measurement we have a set of four values (time, glucose,
carbohydrates, insulin). It is important to note that values of carbohydrates (CH)
are estimated by the patients, who were trained previously. The values of the insulin
are recorded (and not estimated), and the measure of the glucose is made by an
electronic system with a normal distributed error (5% absolute error on average).
Table 1 shows a reduced version of our data set.

Our goal is to develop predictions for four time windows, namely for 30, 60,
90 and 120 min ahead. For example, for the 30 min horizon we need to obtain the
following model:

3On June 6, 2012, the Clinical Research Ethics Committee of the Hospital of Alcalá de Henares
(Spain) authorized the use of the data collected, provided that the privacy of the data is ensured
and the informed consent of patients is made.
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Table 1 Portion of a dataset for a patient

ID Day Hour Type GSensor · · · CH INS

· · · · · · · · · · · · · · · · · · · · · · · ·
36817 2016/03/31 15:43 0 61

36818 2016/03/31 15:58 0 61

36819 2016/03/31 16:13 0 71

36820 2016/03/31 16:28 0 80

36821 2016/03/31 16:43 0 83

36822 2016/03/31 16:58 0 83

36823 2016/03/31 17:23 4 1.0

36823 2016/03/31 17:23 5 0.5

37035 2016/03/31 17:14 0 75

37036 2016/03/31 17:29 0 64

37902 2016/04/01 15:13 4 1.0

37902 2016/04/01 15:13 5 1.0

38083 2016/04/01 15:09 0 122

38084 2016/04/01 15:24 0 115

38085 2016/04/01 15:39 0 110

· · · · · · · · · · · · · · · · · · · · · · · ·
For each sample we have an identifier (ID), Day and Hour of the event and TYPE of the variable
(0=Glucose,4=Carbohydrates, 5=Insulin). Glucose measured by the sensor (GSensor) is given as
mg/dl, the carbohydrates as units (CH, 10 g = 1 unit), and insulin as units (INS). There is also
information about errors and notes which are not relevant for the model and here represented by
dots

Ĝt+30 = ft+30({Gt+i : i ∈ (−240 . . . 0)}, (1)

{It+j : j ∈ (−240 . . .+ 30)}, {Ct+k : k ∈ (−240 . . .+ 30)})

where time offsets are given in minutes, and

• G is the time series of measured blood glucose concentration values;
• Ĝt+30 is blood glucose predicted for time t+30 min;
• {Gt+i : i ∈ (−240 . . . 0)} are glucose values registered from up to 4 h before

the prediction is made;
• C is the amount of carbohydrate inputs as estimated by the patients;
• {Ct+k : k ∈ (−240 . . . 0)} are carbohydrates values estimated by the patient and

registered up to 4 h before;
• {Ct+k : k ∈ (1 . . . + 30)} are carbohydrates values planned for the following

30 min;
• I is the time series of insulin inputs (pump and bolus);
• {It+j : j ∈ (−240 . . . 0)} are insulin values registered up to 4 h before;
• {It+j : j ∈ (1 . . .+ 30)} are insulin values planned for the following 30 min.

Following the same notation we also forecast blood glucose Ĝ up to 120 min ahead:
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Ĝt+60 = ft+60({Gt+i : i ∈ (−240 . . . 0)}, (2)

{It+j : j ∈ (−240 . . .+ 60)}, {Ct+k : k ∈ (−240 . . .+ 60)})

Ĝt+90 = ft+90({Gt+i : i ∈ (−240 . . . 0)}, (3)

{It+j : j ∈ (−240 . . .+ 90)}, {Ct+k : k ∈ (−240 . . .+ 90)})

Ĝt+120 = ft+120({Gt+i : i ∈ (−240 . . . 0)}, (4)

{It+j : j ∈ (−240 . . .+ 120)}, {Ct+k : k ∈ (−240 . . .+ 120)})

where Ĝt+60, Ĝt+90 and Ĝt+120 are blood glucose predicted for 60, 90 and
120 min. Again, at each time point t data from up to 4 h before are available for
prediction. To generate the four prediction models ft+30, ft+60, ft+90, ft+120 we
used enhanced variants of GE for evolving models as explained in the following
sections.

3 Modeling Glycemia by Grammatical Evolution with Data
Preprocessing

Figure 1 shows a grammar we have applied for searching a representation of the
relation between the glucose in 30 min (Gt+30) and the available input variables.
Using this grammar, model expressions are formed as combinations of input
variables, mathematical operators {+,−, ∗, /} and functions exp, sin, cos and log.
As in previous works [8–10], the first set of grammars is used to direct the search
introducing some knowledge on it. Thus, the start symbol is always transformed
into an expression in the form of:

<expr> ::= <gl> + <ch> - <ins>

which indicates that the final expression (phenotype) is a combination of glucose
variables, <gl>, with carbohydrates variables, <ch>, that have a positive impact,
and insulin variables, <ins>, that have a negative impact. The grammar supports
the idea that meals (carbohydrates) always increase the glucose value, while insulin
always reduce the glucose values.

We have implemented the GE process in Java using the ABSys JECO library
[11] using compilable phenotypes to speed up the evaluation of individuals [12].
Variables xi correspond to the pre-processed input data, as explained in [3].
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# Model expression
<func> ::= <expr>

<expr> ::= (<gl> + <ch> - <ins>)

# Glucose
<gl> ::= <preop> (<gl>) | <vargl> | <gl> <op> <gl> |

(-1)*(<gl>)
<vargl> ::= x2|x3|x4|x5|x6|x7|x8

# CH
<ch> ::= <preop> (<ch>) | <varch> | <ch> <op> <ch>
<varch> ::= x9|x10|x11|x12|x13|x14|x15|x16|x17|x18|x19|x20|x21|x22|x23

# Insulin:
<varins> ::= x24|x25|x26|x27|x28|x29|x30|x31|x32|x33|x34|x35|x36|x37|x38
<op> ::= +|-|*|/
<preop> ::= Math.exp|Math.sin|Math.cos|Math.log
<cte> ::= <base>*Math.pow(10,<sign><exponent>)
<base> ::= <digit digit>
<digit> ::= 1|2|3|4|5|6|8|9
<sign> ::= +|-

Fig. 1 Grammar developed for solving the extraction of models of glycemia for Gt+30. It
considers the pre-processed input data (xi variables) and includes some knowledge about the
glucose prediction problem

3.1 Using a Traditional SR Grammar

The traditional approach in SR usually follows a more restrictive use of the number
of variables, functions and operators. This approach has been investigated by other
authors in both GE [13, 14], where authors developed and work with different
grammars, and GP [15] where the authors reduced the number of features and still
retrieved appealing results. Following this idea we also investigated a traditional SR
grammar with reduction in the number of input variables [16].

The reduction of variables has been done after observing that the information
of two consecutive values of preprocessed glucose values, for instance G(t−[15...0[)
and G(t−[30...15[) are very similar and, therefore, the use of both them does not
provide any relevant information. In the case of carbohydrates and insulin, instead
of eliminating variables we add them by pairs. The reason is that we want to
preserve all the inputs, i.e. we need all the information of insulin and carbohydrates.
This approach also reduces the number of operators to the three basic arithmetic
operations: +, − and ∗. In most of the phenotypes, the division operation only
incorporates complexity without being part of the best solutions. We have also
reduced the complexity of the rules to generate constants for two reasons. First, since
we have reduced the number of rules for the rest of the terminals, it is not convenient
for the constants to consume a large number of genes on the chromosome, since it
could lead to an increase in the number of wrappings, or the number of non-feasible
solutions. Second, during the tuning of the algorithm in the preliminary experiments
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<func> ::= <expr>

<expr> ::= (<expr> <op> <expr>) | (<cte> <op> <expr>) | <var>

<var> ::= <varch> | <varins> | <vargl>

<op> ::= + | - | *

<vargl> ::= x2 | x4 | x7

<varch> ::= x9 | (x10 + x11) | (x12 + x13) | (x14 + x15) | (x16 + x17) |
(x18 + x19) | (x20 + x21) | (x22 + x23)

<varins> ::= x24 | (x25 + x26) | (x27 + x28) | (x29 + x30) | (x31 + x32) |
(x33 + x34) | (x35 + x36) | (x37 + x38)

<cte> ::= <factor> * <digit>
<factor> ::= 0.1 | 0.01 | 0.001| 0.0001| 1
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

Fig. 2 Grammar developed for solving the extraction of models of glycemia for Gt+120. This
grammar considers the pre-processed input data (xi variables) and shall lead to the reduction of
the number of variables

we have observed that good solutions do not incorporate large constants. Hence,
those complex constants can be simplified. Figure 2 shows the grammar used in this
second approach for obtaining models for Gt+120. For the models of Gt+30,Gt+60
and Gt+90, we produced similar grammars using the available variables for each
time horizon.

4 Enhancing Quality of Input Data with Data Augmentation

One the main obstacles that researches encounter when training models is the lack
of significant amounts of data. Especially in medical data analysis, the collection
of data is very complex, as data from real patients is not always easy to collect
in sufficient quantity and quality. In this section we describe a methodology called
data augmentation [4], which generates synthetic glucose time series from real data.
These synthetic time series can be used to train a GE model or to produce several
GE models that work together in a combined system.

The term data augmentation was coined by Tanner and Wong [17], and it relates
to methods for constructing iterative sampling algorithms that introduce unobserved
data or latent variables. More advanced approaches include simulation of data
based on dynamic systems [18] or evolutionary systems [19]. The idea is to find
a filter that, once applied to the real data, give us two time series: a smoothed
version of the measured blood glucose and a remainder that follows a Gaussian
distribution. We can then generate new time series by adding up new Gaussian time
series to the smoothed version of the blood glucose. As a filter, we use a weighted
moving average (WMA) whose parameters are optimized by an univariate marginal
distribution algorithm (UMDA).



Identification of Models for Glucose Blood Values in Diabetics by Grammatical. . . 375

Thus, our technique is based on two steps:

• First, we estimate the WMA parameters using an UMDA algorithm, where the
fitness function uses the p-value of the Shapiro-Wilk test so that the remainder
of the glucose time series follows a Gaussian distribution.

• Second, we generate the synthetic time series sampling new values from the
normal distribution and adding them up to the smoothed version.

4.1 Moving Averages

A moving average (MA) is a type of finite impulse response filter which calculates
the convolution of the glucose values with a fixed weighting function using a
rolling window. In this study we have used a weighted MA (WMA) in which each
weight is different. The simplest way of calculating the WMA in a period of N
observations is:

1. Add the values of the weighted glucose level of the last N observations.
2. Divide the result by the sum of the individual weights.

Equation (5) defines the WMA for the last N observations, given a glucose time
series (G) consisting of at least M observations (N ≤ M). This calculation is done
for the whole glucose time series.

WMAM =

M∑

i=M−N

wi ×Gi

M∑

i=M−N

wi

(5)

MAs have been used in numerous applications, e.g. to smooth out high-frequency
variations and find the long-term trends. In Fig. 3 we can see the results of applying
the WMA filter to blood glucose time series of Fig. 4.

4.2 Univariate Marginal Distribution Algorithm

The univariate marginal distribution algorithm (UMDA), proposed by Pelikan and
Mühlenbein [20, 21], is a stochastic, evolutionary optimization method that belongs
to the class of so-called estimation of distribution algorithms (EDAs). EDAs do
not rely on the usual genetic operators for creating new individuals (crossover and
mutation). Instead, they sample from a probabilistic distribution which is estimated
from the best individuals of the previous generation. The UMDA algorithm is
perhaps the simplest form of an EDA and uses the empirical univariate marginal
probability (that is to say, the frequency of each component in the population).
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As mentioned above, we use an UMDA for obtaining the N weights for the
weighted moving average (WMA). We have experimented with different fitness
functions. In this paper, we have used the p-value of the Shapiro-Wilk test [22].

P = (
∑N

i=1 AiGi)
2

∑N
i=1(Gi −MEAN(G))2

(6)
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Equation (6) shows the results of the Shapiro-Wilk test, where Gi are the blood
glucose levels and Ai are factors obtained through a process that samples from
a standard normal distribution and identically distributed random variables, and
composes them with their covariance matrix.

4.3 Obtaining Models with Augmented Data

In Fig. 5 we show the complete workflow of the data augmentation approach. We
start from 12 days of real data (top of the figure). Then we divide these 12 days
into three portions of 4 days. The first 4 days of data are used to train a GE model
using a grammar similar to the one presented in Fig. 1. Also, with these first 4 days,
we generate a time series using a WMA where the weights were found using an
UMDA. After that, we have explored two options to improve GE. We can either
obtain a unique GE model with both real data and synthetic data, or look for several
GE models where a final prediction is made using a weighted linear combination of
each model (ensemble). The UMDA is trained using the second section of 4 days
from the 12 days of real data. Models are validated using the last 4 days of the 12
day window.

5 Why Grammatical Evolution?

Recently there has been an interesting discussion about whether grammatical
evolution works or it is simply a metaheuristic forced by the natural metaphor on
which is inspired [23, 24]. As will be evident, our team is a strong supporter of the
usefulness of evolutionary grammars as a powerful search and optimization tool.
We consider that it has a theoretical basis that is firm and serious, although not fully
developed (like other evolutionary computation theory). Let’s see some reasons for
our selection.

The search space in which we move to obtain models of blood glucose is
immense and grammatical evolution allows us to work on it in an effective way
and under different approaches. Although this chapter explains techniques which
are essentially solutions to symbolic regression problems, our group has tested
other interesting approaches that allow us to investigate other possibilities and
incorporate knowledge through the grammars. For instance, in some of our works
we have applied a grammar similar to the one in Fig. 6. This (portion of a)
grammar incorporates important knowledge about the dynamics of the insulin and
carbohydrates on the glucose. We can assume that the intake of carbohydrates and
insulin are spread along a period of time, instead of being a discrete input associated
to a time instant. Hence, we included in our grammars non-terminal symbols like
<curvedCH>, that can be then mapped to the Bateman function represented by:
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Fig. 5 Complete optimization work flow

beta(0.041*Math.min(24,getPrevDataDistance(1,k,1)),2,5)

where beta is the classical Beta distribution function and the function named
getPrevDataDistance returns the number of recorded events since the last
input of the variable (either carbohydrates or insulin).

This technique can be used also for obtaining an expression of the model for
the dynamic behavior of insulin. Analogously, Fig. 7 replicated the process for the
dynamic of the insulin. The important thing here is that the grammar allows us
not only to incorporate knowledge, but also to obtain information about the best
dynamic. If good solutions incorporate more frequently (or even better, always)
one of the options, we can simplify the grammars and, at the same time, have
an interpretation of the models according to a physiologic idea. That is was what
we exactly did for our best results: incorporate the Bateman functions in the
preprocessing of the data and simplify the grammars. With these data and grammars,
the optimization process is similar to solving a SR problem.

Another reason to select GE as our optimization method, apart from our previous
successful research, has to do with neutral mutation properties and solutions that
have different genotypes but equal (or similar) phenotypes. In problems like the
one treated in this chapter, the phenotype can have several interpretations. We
can consider that the phenotype is the mathematical expression that represents
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# Data 2h ago (24 elements of 5 min.) operated somehow.
<func> ::= predictedData(k-<idxCurr2h>) + <exprch> - <exprins>
# Real glucose can be, as sooner as two hours ago:
<idx4hto2hAgo> ::=

24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46|47|48
# Predicted glucose could be the most recent one.
<idxCurr2h> ::= 1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23
# CH
<exprch> ::= (<exprch> <op> <exprch>)

|<preop> (<exprch>)
|(<cte> <op> <exprch>)
|(getPrevData(1,k,1) * <cte> * <curvedCH>)
| ......
|<curvedCH>
|<cte>
|<exprch2>

<exprch2> ::= (getPrevData(1,k,1) <op> (getPrevDataDistance(1,k,1)))
|(getPrevData(1,k,1) <op> getPrevDataDistance(1,k,1))
|(getPrevData(2,k,1) <op> getPrevDataDistance(2,k,1))
|(getPrevData(3,k,1) <op> getPrevDataDistance(3,k,1))
|(getPrevData(4,k,1) <op> getPrevDataDistance(4,k,1))
|(getPrevData(1,k,1) <op> getPrevDataDistance(1,k,1))
|(getPrevDataDistance(1,k,1))
|(getPrevDataDistance(2,k,1))
|(getPrevDataDistance(3,k,1))
|(getPrevDataDistance(4,k,1))
|(getPrevData(1,k,1))
|(getPrevData(2,k,1))
|(getPrevData(3,k,1))
|(getPrevData(4,k,1))

# CH in 2 (0.041,24), 3 (0.027,36) and 4 (0.02,48) hours with 3 shapes of beta:
<curvedCH> ::= beta(0.041*Math.min(24,getPrevDataDistance(1,k,1)),2,5)

|beta(0.041*Math.min(24,getPrevDataDistance(1,k,1)),3,3)
|beta(0.041*Math.min(24,getPrevDataDistance(1,k,1)),5,2)
|beta(0.027*Math.min(36,getPrevDataDistance(1,k,1)),2,5)
|beta(0.027*Math.min(36,getPrevDataDistance(1,k,1)),3,3)
|beta(0.027*Math.min(36,getPrevDataDistance(1,k,1)),5,2)
|beta(0.02*Math.min(48,getPrevDataDistance(1,k,1)),2,5)
|beta(0.02*Math.min(48,getPrevDataDistance(1,k,1)),3,3)
|beta(0.02*Math.min(48,getPrevDataDistance(1,k,1)),5,2)

Fig. 6 A grammar developed for the extraction of models of glycemia. (Part a)

the model. The phenotype can also be taken as the set of tuples (time, glucose,
carbohydrates, insulin) expressing the blood glucose profile, both in the validation
of the training model and in the prediction phases with new data. Two features may
be highlighted in this approach:

• Different genotypes or chromosomes can lead to the same expression after the
particular decoding and mapping processes of GE.

• Different mathematical expressions (hence, coming from different genotypes)
can lead to equal tuples (or similar in the vast majority of points in space).

It has been demonstrated in previous work that this particularity is very useful in
the search for solutions within evolutionary computing in general. There are works
that tackle this theory outside GE, but that we clearly identify them with the search
spaces that appear in this chapter [25, 26].
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# Insulin:## Sum of insulins in past 2h minus the peak
## Curve for the peak in past 2h
<exprins> ::= (<exprins> <op> <exprins>)

|<preop> (<exprins>)
|(<cte> <op> <exprins>)
|getVariable(2,k-<idx>)
|((getSumOfValues(24,k,2) - getMaxValue(24,k,2)) <op>
(getMaxValue(24,k,2) <op> <curvedINS>))

# INS in 2 (0.041,24), 3 (0.027,36) and 4 (0.02,48) hr. with 3 shapes of beta:
<curvedINS> ::= beta(0.041*Math.min(24,getMaxValueDistance(24,k,2)),2,5)

|beta(0.041*Math.min(24,getMaxValueDistance(24,k,2)),3,3)
|beta(0.041*Math.min(24,getMaxValueDistance(24,k,2)),5,2)
|beta(0.027*Math.min(36,getMaxValueDistance(36,k,2)),2,5)
|beta(0.027*Math.min(36,getMaxValueDistance(36,k,2)),3,3)
|beta(0.027*Math.min(36,getMaxValueDistance(36,k,2)),5,2)
|beta(0.02*Math.min(48,getMaxValueDistance(48,k,2)),2,5)
|beta(0.02*Math.min(48,getMaxValueDistance(48,k,2)),3,3)
|beta(0.02*Math.min(48,getMaxValueDistance(48,k,2)),5,2)

<op> ::= +|-|*|/
<preop> ::= Math.exp|Math.sin|Math.cos|Math.log
<cte> ::= <base>*Math.pow(10,<sign><exponent>)
.....

Fig. 7 A grammar developed for the extraction of models of glycemia. (Part b)

6 Experimental Results

After explaining the main techniques we employed in the previous sections, we here
summarize some of the most important experimental results of our research.

The most frequently used metric for assessing the quality of regression solutions
is the root squared mean error (RSME). However, this metric and also error
functions that include average processes are not very useful in a problem such as our
glucose model identification problem because a prediction with an error of 20 points
can be very bad if the actual glucose is low, or maybe not so bad if the actual data
belongs to the safe range of values. Thus, we here use the Clarke error grid (CEG)
metric [27], a metric that better illustrates this behavior showing the differences
between actual and predicted glucose values through regions on a Cartesian space.
The idea is that a point (x, y) represents the situation where the actual glucose value
is x and the predicted value is y. The golden prediction is y = x. The key point of
this approach is that it defines five delimited zones (A to E) with different properties:

• Zones A and B: Values on Zone A represent the glucose values that deviate from
the reference values by 20% or less and those that are in the hypoglycemic range
(<70 mg/dl), not only the predicted value but also the reference value. Predicted
values on zone B deviate from the reference values by more than 20% although
the clinical treatment will be correct with a high probability. The samples in
zones A and B are clinically exact or at least acceptable, and thus the clinical
treatment will be correct. We will treat those classes as a combined category in
the analysis of our experimental results.
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Fig. 8 An example of a Clarke Error Grid for a predictions. We can see points on different zones
of the prediction space

• Zone C: The values in this zone could be dangerous in some situations. The
goal is to minimize predictions in this category.

• Zones D-E: The values included in those areas are potentially dangerous, since
the prediction is far from being acceptable and the indicated treatment will be
different from the correct one. Again, the goal is to minimize predictions in this
category.

There is no general consensus in the evaluation of prediction errors related to
diabetic patients. In fact, the limits of the zones described by CEG were modified
in [28] with little attention from the research community. Hence, we decided to use
the definition formulated in the original paper. Figure 8 shows an example CEG
diagram for predictions in t + 60.

6.1 Experimental Environment

We have implemented the GE algorithms in Java, and we have stored them in
a public GitHub repository called JECO, which stands for Java Evolutionary
Computation library [11]. In order to ease the utilization of this library by the
community of researchers, we have decoupled the implementation of the algorithms,
operators and utility methods from the problem specification. Hence, if a researcher
wants to use JECO, it is only necessary to develop the code related to the particular
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Fig. 9 Pancreas Model Tools application, training tab

problem that is tackling, which basically means the codification of a solution, the
evaluation of a solution and the generation of the initial population.

In the case of the modeling of glucose in diabetic patients, we have developed
an application that we have called Pancreas Model Tools (PMT). PMT includes
a complete graphical user interface (GUI) that allows the user to configure the
parameters of the experiments, and also to obtain information about the performance
of the experiment, both graphically and in text formats.

In Fig. 9 we show the main window of PMT. We here see the “Training (GE)”
tab, where the user can select the parameters for the training phase, where the GE
algorithm is run. It can be seen that is easy to select the training file, the grammar
file, the number of generations, the crossover probability, the population size, the
mutation probability, the maximum number of wraps, the number of codons in
the chromosome and the size of the tournament for selection. In addition, the
method to initialize the population can be selected (random or sensible). Besides, the
objective function can be chosen with a combo box. The default objective function
is RSME, but the absolute error and the Clarke Error Grid (CEG) objectives can
also be selected. Notice that a button labeled as “CEG penalty” is also available,
clicking this leads to the display of a dialog where the researcher may define the
penalty applied to the points in the regions B, C, D and E of the CEG fitness
function.

On the right-hand side of the window the user can observe the progress of
the optimization in the plot of the objective function values. In addition, a clock
measuring the execution time is displayed, and a button to stop the execution is also
available.
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Fig. 10 Pancreas Model Tools application, validation tab

The bottom-right part of the window allows the user to both plot a graph where
the solution is evaluated and display a CEG plot with these data. Besides, a CSV
file can be generated to be used in a spreadsheet or in other tools, where the
selected solution is evaluated according to the chosen file (training, validation or test
files).

The bottom-left part of the window shows a component where the solutions of the
experiments can be stored. This way, the researcher can run different experiments,
store the solutions with the button “Store Solutions”, and then validate the different
models with our validation tool.

The “Validation” tab, displayed in Fig. 10, has a low number of parameters. On
the one hand, a validation file is required and, on the other hand, a set of models from
training executions is needed. In this phase, PMT performs a selection of the best
models using Probabilistic Fitting. This technique makes use of the χ2 test to select
those models which, applied in combination, generate the best prediction with the
confidence percentage determined by the user. All the given models are evaluated
using the validation data and ranked according to their p-value with respect to the
expected data. Then, the statistical test is run taking 2 models, then 3 models, then 4,
etc., which leads to the p-values of these combinations. Hence, the validation ends
with the selection of a number of models to be used. PMT also provides a button to
plot the resulting models.

The “Test” tab, displayed in Fig. 11, allows to assess the performance of the
validated models on a set of test data. In this case, the stored solutions (models) are
evaluated on the test data. The resulting values are compared with the target glucose
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Fig. 11 Pancreas Model Tools application, testing tab

value, yr in the figure, and the R2 value is shown. Therefore, the researcher can
easily obtain a quality measure for the resulting models.

The last tab of the application is devoted to the setup and log tasks. As seen in
Fig. 12, a text area displays the log of the execution of PMT. This log can be stored
in a file for future applications, data such as the fitness of the best solution, deviation
of the fitness on each generation and partial execution times are logged during the
optimization. In the lower part of the tab the user can select the directory where
the log file will be saved as well as the compilation directory. This last element is
needed because PMT performs the compilation of phenotypes which, in this kind of
models, accelerates the evaluation of the solutions [29].

PMT can also be run in console mode allowing long experiment runs on server
machines. In this execution mode, a properties file is required, where each one of
the parameters previously described (either in training, validation and test tabs)
can be included. The properties file can be generated from the GUI through the
corresponding menu option, and it can be also imported to the graphical mode.

Finally, we have embedded a simple grammar editor in PMT, shown in Fig. 13.
Users can edit a grammar file directly in PMT and also verify the correctness of the
grammar.

PMT is still under development, and some features need further improvements
and corrections. However, we are confident that in a near future the tool will be
finished and then made available to the researchers community.
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Fig. 12 Pancreas Model Tools application, setup and log tab

Fig. 13 Grammar editor in Pancreas Model Tools
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6.2 Results

We use two different datasets for the experiments:

• Data Set 1: 10 T1DM patients (n=10) have been selected for the observational
study, based on conditions of good glucose control. Data from patients were
acquired over multiple weeks using Medtronic (c) CGMs. Log entries were
stored in 5-min intervals, and insulin was injected using a Medtronic Pump. In
this dataset, we have at least 10 complete days of data for each patient. The
patients were predominantly female (80%), their (average) age 42.3 (±11.07),
the number of years of disease 27.2 (±10.32), the number years with pump
therapy 10 (±4.98), their weight 64.78 (±13.31) kg, and their HbA1c 7.27% on
average (±0.5%). The average number of days with data is 44.80 (±30.73).

• Data Set 2: 5 T1DM patients (n=5) were monitored in an observational study.
Data from patients were acquired over 12 days with Abbot FreeStyle Libre (c)
devices. We have observations every 15 min up to a total of 1152 measures. We
also have recorded (estimated by the patient) carbohydrate units ingested and
insulin injected by manual doses. The patients were also predominantly female
(80%), their (average) age 36.4 (±10.60), the number of years of disease 21.18
(±10.13), the number of years with pump therapy is not available, their weight
68.63 (±15.58) kg, and their HbA1c 7.84% on average (±1.42%). The number
of days with data is 12.

6.2.1 Results with GE with Data Preprocessing

First, we analyze results using GE with data preprocessing explained in Sect. 3.
We obtained models for Data Set 1 for prediction in 30, 60, 90 and 120 min time
windows. We used the RSME as fitness function, and GE with 200 individuals,
one point crossover with 0.65 probability, individual mutation probability of 0.05,
300 codons, 5 wrappings, and 250 generations. We used the identifier GE_spec to
refer to the grammars like the one in Fig. 1 and GE_gen to the experiments with
Fig. 2. We also compare results with a GP approach as the one explained in [3]
(Table 2).

Additionally, we have used two baseline predictors. The first one considers the
average glucose of the previous values in the past 2 h; we denote it here as Avg. The
second baseline considers as the prediction the last known value of the glucose; it is
here denoted as Last. For all the techniques the prediction accuracy is better for the
short forecasting horizons and gradually become worse as the forecasting horizon
is increased from 30 min to 2 h. GE variants performed best for 30 and 60 min
and GP variants performed best for higher horizons although not with significant
differences.
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Table 2 Fractions of predictions (in percent) on independent test data

t+30 t+60

Alg A + B C D E A + B C D E

Avg 39.98 + 45.85 0.00 14.17 0.00 39.97 + 45.92 0.00 14.11 0.00

Last 71.82 + 25.23 0.22 2.68 0.01 53.85 + 39.84 1.19 4.79 0.35

GE_spec 77.90 + 19.93 0.26 1.87 0.01 57.21 + 37.17 1.19 4.21 0.23

GE_gen 80.67 + 17.51 0.38 1.43 0.01 58.65 + 35.80 1.28 4.07 0.21

GP 82.97 + 14.45 0.05 2.53 0.01 63.25 + 31.06 0.27 5.37 0.04

t+90 t+120

Alg A + B C D E A + B C D E

Avg 40.00 + 45.89 0.00 14.09 0.00 40.03 + 45.88 0.00 14.07 0.00

Last 44.41 + 45.56 2.84 6.16 1.05 39.13 + 47.96 4.14 6.88 1.88

GE_spec 46.91 + 43.85 1.98 6.74 0.52 42.18 + 44.47 2.28 10.92 0.15

GE_gen 47.58 + 43.38 2.27 6.14 0.62 41.74 + 47.01 2.16 8.18 0.89

GP 53.99 + 38.66 0.41 6.81 0.10 50.26 + 40.97 0.41 8.07 0.26

For each patients and prediction horizon, the best modeling results are highlighted

6.2.2 Results with GE with Data Augmentation

Second, we present results for testing the application of data augmentation. We
augmented the training data of Data Set 2 with new time series and got a new
GE model trained with the original data plus ten more synthetic time series. The
models were trained rolling a window of 4 h (16 observations) through the data to
make a prediction with the different forecasting horizons (30, 60, 90 and 120 min).
The fitness function for the GE models was again the RMSE. The results of this new
model are presented in Fig. 14. It is important to point out that this model drastically
decreases the predictions in the C zone, whereas the points in the B and A zones
are more than 20% and more than 70%, respectively. There is a slight increase
of points in the D zone and no predictions were in the most dangerous section,
zone E.

In addition, the ten new time series were used to train ten new GE models. The
full set of models (original model and the ten new ones) were combined into an
ensemble model. This way, the prediction of the ensemble is the weighted sum
of every individual prediction as explained above. The final prediction (Ĝ) is a
linear combination of every GE model’s prediction Ĝi . The prediction horizons
are 30, 60,90 and 120 min. To get the value of the weighs (Wi), the combining
system was trained during the second section of the real data using and UMDA
algorithm.

In Table 3 we summarize the results of all the experiments, which are labeled as
follows:

• OrigGE, grammatical evolution model trained only with original data.
• SynthGE, GE model trained with original plus synthetic data.
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Fig. 14 Clarke Error Grid results for GE model trained with original and synthetic data

• EnsembleGE, system that combines the predictions of ten GE models.
• MAPE is the mean absolute percentage error for training (MAPE-T) and

validation (MAPE-V) phases.

So, from Table 3 several conclusions arise:

• Prediction horizon 30 min:

– All the strategies have similar performance with no points in the D and E
zones.

• Prediction horizon 60 min:

– This horizon seems to point out the frontier of safe predictions as all the
strategies begin to have points in the D and E zones.

– Although the GE model has fewer points in the D and E zones, a lot of
predictions are in zone C. Please keep in mind that predictions in zone C
can lead to unnecessary treatments.

– The best model is EnsembleGE, almost 95% of the predictions are in the A
and B zones (see also Fig. 15).

• Prediction horizon 90 and 120 min:

– For greater horizons, all techniques get bigger MAPE-Vs and a lot of
predictions in the most dangerous zones.

– The percentage of points into the A and B zones remain around 80% for
SynthGE and EnsembleGE, but the percentage in the A zone is reduced
drastically in comparison to the previous horizons. Besides, the ratio of
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Table 3 Clarke zones for predicted values

Strategy Horizon = 30 min

Zones percentage

A B C D E MAPE-T MAPE-V

OrigGE 45.88 47.18 6.92 0.00 0.00 4.1 7.1

SynthGE 55.8 42.6 1.6 0.00 0.00 3.1 5.45

EnsembleGE 59.25 39.92 0.83 0.00 0.00 5.7 6.33

Strategy Horizon = 60 min

Zones percentage

A B C D E MAPE-T MAPE-V

OrigGE 10.78 41.36 40.98 3.12 3.76 13.72 21.25

SynthGE 40.2 41.12 15.8 2.12 0.76 8.1 12.45

EnsembleGE 79.08 15.1 3.5 1.02 1.3 5.7 7.63

Strategy Horizon = 90 min

Zones percentage

A B C D E MAPE-T MAPE-V

OrigGE 17.25 40.28 33.03 6.88 2.56 12.20 19.07

SynthGE 33.09 44.12 18.03 2.56 2.2 7.1 13.45

EnsembleGE 43.33 41.23 11.7 2.54 1.2 6.7 12.3

Strategy Horizon = 120 min

Zones percentage

A B C D E MAPE-T MAPE-V

OrigGE 15.45 35.81 40.30 3.78 4.66 17.31 23.89

SynthGE 32.34 41.12 21.7 1.54 3.3 16.6 18.54

EnsembleGE 51.1 32.67 11.73 3.4 1.1 12.7 16.33

predictions in the D and E zones is within 4% and 5%. Both strategies
improve the behavior of the OrigGE model, and the ensemble modeling
strategy leads to slightly more robust results (fewer points in the C, D and
E zones and lower MAPE-V values) (Fig. 15).

An example of one solution is shown on Fig. 16:

Ĝt+30 = −0.05− 0.0008 ∗ V ariable(24, k) ∗ (V ariable(8, k)+ (7)

+V ariable(2, k)+ 0.2+ V ariable(24, k)+ 0.01 · V ariable(6, k)

That translated to the variables of Glucose SR is:

Ĝt+30 = −0.05− 0.0008 ∗ I(t) ∗G(t−[15...0[) + (8)

+G(t) + 0.2+ I(t) + 0.01 ·G(t−[45...30[)
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Fig. 15 Clarke Error Grid results for weighted ensemble
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7 Conclusions

In this chapter we presented several techniques to find prediction models for glucose
prognosis. They are based on GE and data processing. We explain how to design
effective grammars and share with the reader several data processing tools that
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improve robustness and quality of the predictions. We have implemented the GE
algorithms in a public GitHub repository called JECO [11]. A complete GUI
called Pancreas Model Tools is also available, that allows the user to configure the
parameters of the experiments, and also to obtain information about performance,
both graphically and in text formats.

We have developed a grammar which includes specific knowledge by considering
that the prediction may depend on the previous values of glucose, carbohydrates
ingestion, and insulin injection. This approach considers the preprocessing of
the data. We also investigated a traditional symbolic regression grammar which
considers a reduction in the number of input variables. This second approach
also reduces the number of operators and the complexity of the rules to generate
constants. We compared both with a traditional genetic programming approach for
symbolic regression.

We also explained a technique, called Data Augmentation (DA), for enhancing
grammatical evolution models in a context of data scarcity. With DA we are able to
generate glucose time series from one sample, that can be used to train GE models.
Experimental results show that the GE models trained with these synthetic time
series get more robust predictions, decreasing significantly the number of dangerous
predictions.
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Grammatical Evolution Strategies
for Bioinformatics and Systems Genomics

Jason H. Moore and Moshe Sipper

Abstract Evolutionary computing methods are an attractive option for modeling
complex biological and biomedical systems because they are inherently parallel,
they conduct stochastic search through large solution spaces, they capitalize on the
modularity of solutions, they have flexible solution representations, they can utilize
expert knowledge, they can consider multiple fitness criteria, and they are inspired
by how evolution optimizes fitness through natural selection. Grammatical evolution
(GE) is a promising example of evolutionary computing because it generates
solutions to a problem using a generative grammar. We review here several detailed
examples of GE from the bioinformatics and systems genomics literature and end
with some ideas about the challenges and opportunities for integrating GE into
biological and biomedical discovery.

1 Introduction

Bioinformatics has its origins in the late 1970s with the convergence of DNA
sequencing, internetworking, and microcomputers. Early demand for bioinformatics
centered on the use of computers and the internet to store, manage, manipulate,
and analyze DNA sequences derived from experimental studies in the biological
and biomedical sciences. This demand exploded in the mid-1990s with the advent
of high-throughput methods for measuring biomolecules such as messenger RNA
levels in cells and tissues [17]. This explosion of data has continued and, when

J. H. Moore (�)
Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA
e-mail: jhmoore@upenn.edu

M. Sipper
Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA

Computer Science Department, Ben-Gurion University, Beersheba, Israel
e-mail: sipper@upenn.edu

© Springer International Publishing AG, part of Springer Nature 2018
C. Ryan et al. (eds.), Handbook of Grammatical Evolution,
https://doi.org/10.1007/978-3-319-78717-6_16

395

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78717-6_16&domain=pdf
mailto:jhmoore@upenn.edu
mailto:sipper@upenn.edu
https://doi.org/10.1007/978-3-319-78717-6_16


396 J. H. Moore and M. Sipper

combined with questions about the complexity of biological systems, creates com-
putational challenges that often require machine learning and artificial intelligence
(AI) approaches [6].

Evolutionary computation has emerged as a useful artificial intelligence approach
for the study of complex biological systems because these methods are inherently
parallel, conduct stochastic search through large solution spaces, capitalize on
the modularity of solutions—which is an important characteristic of biological
systems, have flexible solution representations, can utilize expert knowledge, can
consider multiple fitness criteria, and are inspired by how evolution optimizes fitness
through natural selection that is understood by biologists. Genetic programming
(GP) is a population type of evolutionary computing [14, 26]. The goal of GP is to
‘evolve’ computer programs to solve complex problems. This is accomplished by
first generating, or initializing, a population of random computer programs that are
composed of the basic building blocks needed to solve or approximate a solution
to the problem. The power of GP is its ability to recombine building blocks to
create new solutions through an iterative process that involves selection of the
best solutions. GP and its many variations have been applied successfully in a
wide range of different problem domains including bioinformatics. The potential
for evolutionary methods to impact complex problem solving was discussed in
a recent editorial [27]. The goal of this chapter is to review bioinformatics and
systems genomics applications of a type of GP called grammatical evolution (GE)
that generates computer programs or solutions using a grammar. These grammar-
based approaches provide tremendous flexibility.

Grammatical evolution (GE) was introduced by Ryan et al. [25] as a variation
on genetic programming. Here, a Backus-Naur Form (BNF) grammar is specified
that allows a computer program or model to be constructed by a simple genetic
algorithm operating on an array of bits. BNF is a formal notation for describing
the syntax of a context-free grammar as a set of production rules that consist of
terminals and nonterminals [15]. Nonterminals form the left-hand side of production
rules while both terminals and nonterminals can form the right-hand side. A terminal
is essentially a model element while a nonterminal is the name of a production rule.
The GE approach is appealing because only a text file specifying the grammar needs
to be altered for different applications. There is no need to modify and recompile
source code during development once the fitness function for evaluating solutions is
specified.

We begin in the next section with a brief summary of GE applications and
some thoughts about the future of this approach for solving complex biological
and biomedical problems. We then review in some detail in the next two sections
a bioinformatics application of GE for machine learning in human genetics and a
systems genomics application of GE for simulating discrete dynamical systems.
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2 A Survey of Grammatical Evolution Approaches
to Bioinformatics and Systems Genomics

A search of the phrase “grammatical evolution” on PubMed revealed only 25
publications. In addition to the studies discussed below, several other applications
of GE have been reported. For example, Smart et al. [28] used GE to do feature
selection and feature engineering to analyze electroencephalogram (EEG) data from
patients experiencing epileptic seizures. In this case, the GE performed as well as
other methods and provided the added benefit of the grammar for rapid development
and testing. As another example, Ferrante et al. [4] used GE to study the behavior of
insects. They found that GE could model self-organized task specialization using
low-level behavioral primitives as building blocks for more complex behaviors.
As a third example, Hidalgo et al. [7] used GE to model and predict glucose
concentrations in physiological systems. The results of this study have important
implications for predicting insulin need in diabetic patients following carbohydrate
intake. More recently, Fenton et al. [3] used grammatical genetic programming to
evolve control heuristics for heterogeneous cellular networks. Finally, GE has been
used in the context of artificial life experiments. For example, Alfonseca and Gil
[1] used GE to study the ecology of mathematical expressions as a way to study
biological evolution. We also searched for “grammatical evolution” and the keyword
“bioinformatics” in the genetic programming bibliography to capture publications
in computer science conferences and other venues not captured by PubMed. This
search returned 13 publications nearly all of which will be discussed below.

3 A Grammatical Evolution Approach to Neural Network
Analysis of Human Genetics Data

An important goal of human genetics and genetic epidemiology is to understand the
mapping relationship between interindividual variation in DNA sequences, variation
in environmental exposure, and variation in disease susceptibility. In other words,
how do one or more changes in an individual’s DNA sequence increase or decrease
their risk of developing disease through complex networks of biomolecules that
are hierarchically organized, highly interactive, and dependent on environmental
exposures? Understanding the role of genomic variation and environmental context
in disease susceptibility is likely to improve diagnosis, prevention, and treatment.
Success in this important public-health endeavor will depend critically on the
amount of nonlinearity in the mapping of genotype to phenotype and our ability
to address it. Here, we define as nonlinear an outcome that cannot be easily
predicted by the sum of the individual genetic markers. Nonlinearities can arise
from phenomena such as locus heterogeneity (i.e. different DNA sequence varia-
tions leading to the same phenotype), phenocopy (i.e. environmentally determined
phenotypes that don’t have a genetic basis), and the dependence of genotypic effects
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on environmental exposure (i.e. gene-environment interactions or plastic reaction
norms) and genotypes at other loci (i.e. gene-gene interactions or epistasis). The
challenges associated with detecting each of these phenomena in big data has been
reviewed and discussed by Moore et al. [20] who call for an analytical retooling to
address these complexities.

The limitations of the linear model and other parametric statistical approaches
for modeling nonlinear interactions have motivated the development of data mining
and machine learning methods. The advantage of these computational approaches
is that they make fewer assumptions about the functional form of the model and
the effects being modeled [16]. In other words, data mining and machine learning
methods are much more consistent with the idea of letting the data tell us what
the model is rather than forcing the data to fit a preconceived notion of what a good
model should be. Neural networks represent one machine learning approach that can
complement parametric statistical approaches such as linear regression. Ritchie et
al. [23, 24] introduced a GP approach to evolving neural networks (NN) for genetic
analysis where both the architecture and the weights of the NN are optimized. This
was later extended to include a grammar for generating NN models using GE [21].
The GENN approach was shown to be more powerful than GPNN for detecting
and modeling gene-gene interactions in population-based studies of human disease
susceptibility. More recent work has incorporated GENN into a pipeline [10] that
includes multiple different data sources and that harnesses the power of feature
selection [12, 13] (see also [9, 29]).

Holzinger et al. [10], who compared grammatical evolution neural networks
(GENN) with grammatical evolution symbolic regression (GESR), noted that, “our
results suggest that GENN is better at correctly and accurately detecting genetic
models with no main effects . . . In the simulated meta-dimensional data, Lasso had
higher detection power for the full model than both GENN and GESR. However,
when we used more powerful parameter settings, GENN was also able to identify
the full model consistently . . . Lasso is considerably faster than either GENN or
GESR, so if computational resources are a major limitation, this may be the optimal
method. However, Lasso is not robust to models with no main effects, so the overall
benefit of a faster analysis would need to be weighted accordingly . . . ”

We now briefly review a simple example grammar for generating NN models
with GE. The root of the grammar picks a node with a logistic activation function
and transfer function with a mathematical function for combining multiple features
(addition, subtraction, multiplication, division) along with some inputs that could
be additional nodes and/or features with weights. The GE operates by generating
an array of bits where each set of bits encodes and integer value that is used to
execute the grammar. For example, an array of bits yielding integers [0,1,1,2] would
generate a NN with a single node with a logistic activation function, a subtraction
transfer function, and a single input of feature number three modified by a randomly
generated weight. A slightly more complex NN example that could be generated
from this grammar with the right integer set is shown in Fig. 1.
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Fig. 1 A GE-evolved neural
network with logistic
activation nodes, arithmetic
transfer functions, numeric
weights, and feature inputs

<root> ::= <node> <input>
<node> ::= <activation> <transfer>
<input> ::= <input> <input> 0

| <feature> <weight> 1
| <node> <input> 2

<activation> ::= logistic 0
| linear 1

<transfer> ::= addition 0
| subtraction 1
| multiplication 2
| division 3

<feature> ::= feature 1 0
| feature 2 1
| feature 3 2

<weight> ::= random number

Once a grammar is specified a genetic algorithm or any other optimization
approach that operates on an array of bits can be applied. Neural networks con-
structed and optimized in this manner provide tremendous flexibility for modeling
complex patterns in big data. A key question is whether these methods could be
extended to deep learning or whether smaller networks optimized using GE could
approximate the performance of much larger NN.

4 A Grammatical Evolution Approach to Systems Genomics
Modeling and Simulation

Understanding how interindividual differences in DNA sequences map onto
interindividual differences in phenotypes is a central focus of human genetics.
Genotypes contribute to the expression of phenotypes through a hierarchical
network of biochemical, metabolic, and physiological systems. The availability
of biological information at all levels in the hierarchical mapping between genotype



400 J. H. Moore and M. Sipper

and phenotype has given rise to a new field called systems biology. One goal of
systems biology is to develop a bioinformatics framework for integrating multiple
levels of biological information through the development of theory and tools that can
be used for mathematical modeling and simulation [11]. The promise of both human
genetics and systems biology is improved human health through the improvement
of disease diagnosis, prevention, and treatment. We illustrate here the use of GE to
discover and optimize Petri net models of discrete dynamical systems.

Petri nets are a type of directed graph that can be used to model discrete
dynamical systems [2]. Goss and Peccoud [5] demonstrated that Petri nets could
be used to model molecular interactions in biochemical systems. The core Petri
net consists of two different types of nodes: places and transitions. Using the
biochemical systems analogy of [5], places represent molecular species. Each place
has a certain number of tokens that represent the number of molecules for that
particular molecular species. A transition is analogous to a molecular or chemical
reaction and is said to fire when it acquires tokens from a source place and, after a
possible delay, deposits tokens in a destination place. Tokens travel from a place
to a transition or from a transition to a place via arcs with specific weights or
bandwidths. While the number of tokens transferred from place to transition to
place is determined by the arc weights (or bandwidths), the rate at which the tokens
are transferred is determined by the delay associated with the transition. Transition
behavior is also constrained by the weights of the source and destination arcs. A
transition will only fire if two preconditions are met: (1) if the source place can
completely supply the capacity of the source arc and, (2) if the destination place has
the capacity available to store the number of tokens provided by the full weight of
the destination arc. Transitions without an input arc act as if they are connected to a
limitless supply of tokens. Similarly, transitions without an output arc can consume
a limitless supply of tokens. The firing rate of the transition can be immediate,
delayed deterministically, or delayed stochastically, depending on the complexity
needed. The fundamental behavior of a Petri net can be controlled by varying the
maximum number of tokens a place can hold, the weight of each arc, and the firing
rates of the transitions.

Moore and Hahn [18, 19] developed a BNF grammar for Petri nets in BNF. For
the Petri net models, the terminal set includes, for example, the basic building blocks
of a Petri net: places, arcs, and transitions. The nonterminal set includes the names
of production rules that construct the Petri net. For example, a nonterminal might
name a production rule for determining whether an arc has weights that are fixed or
genotype-dependent. We show below the production rule that was executed to begin
the model building process for the study by [19].

<root> ::= <pick_a_gene> <pick_a_gene> <pick_a_gene>
<net_iterations> <expr> <transition> <transition> <place_noarc>

When the initial <root> production rule is executed, a single Petri net place with
no entering or exiting arc (i.e. <place_noarc>) is selected and a transition leading
into or out of that place is selected. The arc connecting the transition and place
can be dependent on the genotypes of the genes selected by <pick_a_gene>. The
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nonterminal <expr> is a function that allows the Petri net to grow. The production
rule for <expr> is shown below.

<expr> ::= <expr> <expr> 0
| <arc> 1
| <transition> 2
| <place> 3

Here, the selection of one of the four nonterminals (0, 1, 2, or 3) on the right-hand
side of the production rule is determined by a combination of bits in the genetic
algorithm.

The base or minimum Petri net that is constructed using the <root> production
rule consists of a single place, two transitions, and an arc that connects each
transition to the place. Multiple calls to the production rule <expr> by the
genetic algorithm chromosome can build any connected Petri net. In addition, the
number of times the Petri net is to be iterated is selected with the nonterminal
<net_iterations>. Many other production rules define the arc weights, the genotype-
dependent arcs and transitions, the number of initial tokens in a place, the place
capacity, etc. All decisions made in the building of the Petri net model are made by
each subsequent bit or combination of bits in the genetic algorithm chromosome.

Figure 2 shows an example Petri net constructed by Moore and Hahn[19]. This
model was evolved using GE to map genotypic variation across different genes to
disease susceptibility determined by levels of protein product. Here, the GE evolved
different arcs (A) connecting transitions (T) to molecular species (P) to be dependent
on different genotypic values at a particular gene. Thus, the GE was able to evolve
both the structure of the network and the parameter settings to reach some target
behavior.

Fig. 2 A GE-evolved Petri
net with different arcs (A)
connecting transitions (T) to
molecular species or places
(P). Each arc, transition, and
place has several different
parameters evolved by the GE
that govern its behavior
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5 The Future of Grammatical Evolution Approaches
to Bioinformatics and Systems Genomics

The potential impact of evolutionary computation in the biological and biomedical
sciences is enormous [27]. Grammatical evolution has a place in this future given
its flexible grammar-based method for representing solutions to complex problems.
We list here several computational challenges that will need to be addressed for
application of GE to biological problems. We then end with some of the hot new
biological problems that GE might be useful for.

The most important challenge of using GE or other similar approaches is
the inherent complexity of biological systems. Biological systems are driven by
molecular, physiological, anatomical, environmental, and social interactions. Layer
on top of this big data from technologies such as high-throughput DNA sequencing
and the modeling challenges become manyfold more significant. No computational
modeling approach is immune to these challenges. Here are a few research topics
that will need to be explored in the coming years. First, what is the best way to adapt
GE to handle diverse data types coming from different sources and technologies?
Kim et al. [12, 13] have started to address this with the GENN system described
above. Second, what is the best way to integrate expert knowledge into GE to help
identify and exploit good building blocks? This is important to provide the GE with
some direction in an effectively infinite search space. Fortunately, there are many
sources of expert knowledge for biological systems including literature sources
such as PubMed and biological knowledge bases such as the hetionet database
that integrates 29 different sources of information about genes, diseases, drugs,
pathways, anatomies, processes, etc. [8]. Third, what is the best way to parallelize
GE for use in cluster or cloud computing technology? Fourth, what is the best
way to store GE results and to create knowledge from those results that can in
turn be used by the GE in future runs? Fifth, what is the best way to perform
multiobjective optimization? This is important for biological problems where there
are often multiple fitness objectives. For example, using GE to identify genetic risk
factor for disease could benefit from rewarding models for the drugability of the
genes it is finding in addition to measures such as classification accuracy. This helps
the GE reward models with genes that are actionable in addition to being predictive.
Finally, what is the best way to interpret GE models and results? This is perhaps the
most important challenge because at the end of the day biologists want actionable
results. They want to be able to learn something from a GE result that will make
it easy for them to design a validation experiment. This is not easy and is an area
where many machine learning and artificial intelligence efforts fall short. If we want
to solve the world’s most complex problems, we need to keep in mind the ability to
derive impact from those solutions. This is something the deep learning community
is struggling with.

Regarding the interpretability issue it is worth mentioning the work of [30].
They developed a system dubbed G-PEA (GP Post-Evolutionary Analysis), for
use with tree-based GP. First, one defines a functionality-based similarity score
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between expressions, which G-PEA uses to find subtrees that carry out similar
semantic tasks. Then, the system clusters similar sub-expressions from a number
of independently-evolved fit solutions, thus identifying important semantic building
blocks ensconced within the hard-to-read GP trees. These blocks help identify the
important parts of the evolved solutions and are a crucial step in understanding how
they work. Though developed within the context of tree-based GP, ideas from G-
PEA may well transfer to GE.

An emergent, important theme in artificial intelligence is that of usability and
accessibility to a person not versed with machine learning. Towards this end [22]
have developed PennAI, an accessible artificial intelligence whose ultimate goal is
to deliver an open-source, user-friendly AI system that is specialized for machine
learning analysis of complex data in the biomedical and healthcare domains. It
would be interesting to examine the use of GE within the context of PennAI.

The biological and biomedical sciences are changing rapidly. We highlight here
a few hot areas where GE could be focused in the coming years. First, cell biology
and genomics continues to be transformed by high-throughput technologies such
as DNA sequencing, mass spectrometry, and imaging. Each of these technologies
generates massive amounts of data about different molecules and cellular processes.
A central challenge in bioinformatics is the integration of these data to facilitate
new scientific questions. Understanding how different molecular and cellular levels
interact to influence a biological process or outcome is a place where grammatical
evolution can have a significant impact given its inherent flexibility for program
or solution representation. Second, mobile devices and remote sensors are starting
to have a big impact on the biological and biomedical sciences. Remote sensors
can track animals and plants in ecological settings while wearable devices can
measure physiology and behavior of human subjects in their natural environment.
These new technologies generate massive amounts of heterogeneous data that often
have a time component adding an additional dimension of complexity. This is an
area that could greatly benefit from GE. Finally, electronic health records (EHR)
have exploded over the last several years for capturing, storing, integrating, and
managing health data. There is an unprecedented opportunity to develop and apply
methods such as GE for identifying patterns of health measures that are predictive
of disease outcomes and drug response, for example. This is an emerging area that
needs machine learning and artificial intelligence strategies for improving health
and healthcare. An example application is the use of GE for real-time monitoring
of patient data synced with clinical decision support systems that can provide
instantaneous alerts to clinicians about patient characteristics that are urgent. Some
of the technical challenges mentioned above will need to be solved for GE use in
these domains to become a reality.
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Grammatical Evolution with
Coevolutionary Algorithms in Cyber
Security

Erik Hemberg, Anthony Erb Lugo, Dennis Garcia, and Una-May O’Reilly

Abstract We apply Grammatical Evolution (GE), and multi population compet-
itive coevolutionary algorithms to the domain of cybersecurity. Our interest (and
concern) is the evolution of network denial of service attacks. In these cases,
when attackers are deterred by a specific defense, they evolve their strategies until
variations find success. Defenders are then forced to counter the new variations and
an arms race ensues. We use GE and grammars to conveniently express and explore
the behavior of network defenses and denial of service attacks under different
mission and network scenarios. We use coevolution to model competition between
attacks and defenses and the larger scale arms race. This allows us to study the
dynamics and the solutions of the competing adversaries.

1 Introduction

Cyber attacks have increased in frequency, sophistication, and severity, and have
been the cause of numerous disruptions. Denial of service attacks target computer
networks because critical data and transactions now flow through them. As a result,
it is crucial to not only be aware of the capabilities of cyber attackers, but also to
design more secure networks. The issue with the current state of cyber defenses,
however, is that they are largely reactive in nature. It is sometimes only when
an attack is experienced that a network defense is strengthened. When attackers
consequently alter their strategies, the of reactive defensive behavior repeats. Our
goal is to investigate this coevolutionary arms race in order to shed light on its
dynamics and identify robust defenses in advance of deployment.

Grammatical Evolution, see Fig. 1, is initialized with a grammar expressed
in Backus Naur Form (BNF) and search parameters. The grammar describes a
language in the problem domain and its (rewrite) rules express how a sentence,
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Fig. 1 Grammatical evolution takes a BNF grammar and search parameters as input. The
grammar rewrites the integer input to a sentence. Fitness is calculated by interpreting the sentence
and then evaluate it. The search component modifies the solutions using two central mechanisms:
fitness based selection and random variation. We use coevolutionary algorithms

i.e. solution, can be composed by rewriting a start symbol, i.e. high level goal.
In our system’s GE component, the BNF description, upon input, is parsed to a
context free grammar representation. GE genotypes are fixed length integer vectors.
Sentences of the grammar are GE phenotypes. To decode a genotype, in sequence
each of its integers is used to control the rewriting. This sentence is the phenotype.
Fitness is calculated by interpreting the sentence and then evaluating it according
to some objective(s). When we use our system to solve different problems, we only
have to change the BNF grammar, the interpreter and the fitness function for each
problem, rather than change the genotype representation. This modularity of GE
and the reusability of the GE parser and rewriter are efficient software engineering
and problem solving advantages. The grammar further helps us communicate
our system’s functionality to stakeholders because it enables conversations and
validation at the domain level rather than at the algorithm level. This contributes
to stakeholder confidence in solutions and our system.

Our system is named RIVALS [10]. Rather than manually tune and invent
defenses for a network every time an attacker adapts and acts in a novel way,
RIVALS assists during network design and hardening with the goal of anticipating
attack evolution and identifying a robust defense that can circumvent the arms race
and the reactive counter-measure postures. It uses coevolutionary algorithms [19]
(and GE) to generate evolving network attacks and to evolve network defenses that
effectively counter them, see Fig. 2. RIVALS’s research is grounded by focusing
on peer-to-peer networks, specifically the Chord protocol, and extreme distributed
denial of service (DDOS) attacks. A peer-to-peer network is a robust and resilient
means of securing mission reliability in the face of extreme DDOS attacks.
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Fig. 2 RIVALS system overview. Defenders are marked in blue and attackers in red

RIVALS’ premise is that its attention to the coevolutionary nature of attack and
defense dynamics will to help identify robust network design and deployment
configurations that support mission completion despite an ongoing attack.

RIVALS currently includes a peer-to-peer network simulator that runs the
Chord [22] protocol. It models simple attacks and defenses on networks running
on the simulator. It measures the performance of attackers and defenders through
the concept of a mission. A mission is represented by a set of tasks to be completed.
These tasks rely on the network’s quality of service to succeed. An attacker’s goal
is to degrade the network so that the tasks, and in extension the mission, fail.
Meanwhile, a defender’s goal is to ensure the success of the mission. Mission
completion and resource cost metrics serve as attacker and defender measures of
success. DDOS attacks in RIVALS are modeled as multiple nodes being selected
and, from a start time, being completely disabled for some duration.

To model the co-adaptive behavior of adversaries, RIVALS sets up separate
populations of attackers and defenders and coevolves them under the direction of
a coevolutionary algorithm. Over the course of many generations, a coevolutionary
optimization process reveals dual collections of more effective defender and attacker
strategies. At this point in time RIVALS has a suite of different coevolutionary algo-
rithms with grammars for two simple problems. The algorithms explore archiving
as a means of maintaining progressive exploration and support the evaluation of
different solution concepts. All algorithms in our suite reuse the parser and rewriter
component of GE.

The rest of this paper is organized as follows. In Sect. 2, we introduce similar
work as well as necessary background information on peer-to-peer attacks and
coevolutionary algorithms. Next, in Sect. 3, we present a brief overview of RIVALS.
Section 4 presents the our experimentation and Sect. 5 shows the results. Finally,
Sect. 6 concludes the paper and discusses potential future directions.

2 Related Work

Our project investigates proactive cyber security modeling by means of GE and
coevolutionary search algorithms. This section of related work and background



410 E. Hemberg et al.

information considers cyber security, coevolutionary algorithms and GE in different
combinations. In Sect. 2.1 we discuss projects at the intersection of evolutionary
algorithms and cyber security, comparing them to RIVALS where relevant. In
Sect. 2.2 we differentiate coevolutionary search algorithms from other EAs, inde-
pendent of GE, and in Sect. 2.3 we discuss systems at the intersection of GE and
coevolution. To date RIVALS is the only system that combines GE and coevolution
in order to investigate a problem in the domain of cyber security.

2.1 Cyber Security and Evolutionary Algorithms

Moving Target Defense (MTD) projects, like RIVALS, use Evolutionary Algorithms
(EAs) in a cyber security problem domain. The strategy of a MTD is to keep an
attacker off guard by continually changing system configurations or information
that the attacker needs to effectively attack. Strategies could involve changing the
software underlying platforms, the location of sensitive data or the timing of system
functions. For example, the system of [25] uses a GA to evolve adaptable adversarial
strategies for defense against zero-day exploits. The system only adapts a defender
population while RIVALS adapts both defender and attacker populations. In another
contrast, it encodes strategies as binary chromosomes that represent finite state
machines whereas RIVALS’ uses a context free grammar. Arguably the important
difference between RIVALS and this system is that evolution is used to address only
two fixed scenarios while in RIVALS attackers compete with multiple defenders and
defenders compete with multiple attackers.

Another work in this context and related to RIVALS is the coevolutionary agent-
based network defense lightweight event system (CANDLES) [20]. It is designed
to coevolve attacker and defender strategies in the context of a custom, abstract
computer network defense simulation. CANDLES’ attack and defense strategies
are not expressed with grammars.

2.2 Coevolutionary Search

Coevolutionary algorithms are well suited to domains that have no intrinsic objec-
tive measure, also called interactive domains [19]. They can be distinguished as two
types: (a) Compositional coevolutionary algorithms that are used to solve problems
where a solution involves interaction among many components that together might
be thought of as a team. This is often called cooperative coevolution. (b) Test-based
coevolutionary algorithms that are used when the quality of a potential solution to
the problem is determined by its performance when interacting with some set of
tests. This is often called competitive coevolution.
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Competitive coevolutionary algorithms are often applied in game search [19].
They are also related to game theory [19]. One advantage over game theory is that
coevolutionary algorithms can be applied to larger search spaces [20].

There are a variety of examples of coevolutionary projects. One more theoretical
project has investigated solution concepts for testcase coevolution with a no free
lunch framework [23]. Others address application domains such as streaming data
classification [13], complexification of solutions [21], simulations of behavior and
bug fixes [16].

2.2.1 Solution Concepts for Coevolutionary Algorithms

Coevolutionary algorithms differ from other EAs in one respect because they
have two interacting populations. These dual populations imply that the algorithm
explores domains in which the quality of a solution is determined by its performance
when interacting with a set of tests. In return, a test’s quality is determined by its
performance when interacting with some set of solutions. For example, the tests of a
network attack strategy are different network routing behaviors that could resist the
attack, and inversely the tests of a network behavior are different attack strategies
that could disrupt the network.

Because a solution’s performance is measured against multiple tests, coevo-
lutionary algorithms use solution concepts to express fitness and clarify what
constitutes a superior solution [19]. Solution concepts include:

Best Worst Case A solution’s fitness is its worst performance against the set
of tests that it tries to solve or its performance against the fittest test case. The
coevolutionary algorithm’s goal is to optimize the best worse case solution.

Maximization of Expected Utility A solution’s fitness is its average perfor-
mance against the test cases. It is usually assumed that tests have equal importance.
The coevolutionary algorithm’s goal is to optimize the average case solution.

Nash Equilibrium Solutions which lead to stable solution states in which no
sole actor can their improve their state unilaterally are preferred. The coevolutionary
algorithm’s goal is to find solutions at a Nash equilibrium.

Pareto Optimality Each test is considered to be an independent objective and
a solution is a multi-dimensional datum in this multi-objective space. From this
space, a pareto optimal (non-dominated) set of solutions can be identified as superior
solutions.

It should also be noted that the interactive aspect of solution fitness also implies
the algorithm lacks an exact fitness measurement. That is, usually, Evolutionary
Algorithms rely upon a fitness function, a function of the form f : G �→ R

that assigns a real value to each possible genotype in G. Individual solutions are
compared as f (g0) with f (g1) and their relative ranking based on fitness is always
the same, i.e. exact. In contrast, in coevolutionary algorithms two individuals are
compared based on their interactions with other individuals. and because these
individuals are only samples from a population and may change as a population
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undergoes evolution, the ranking of an individual relative to another solution is
essentially an estimate.

We now describe a set of coevolutionary algorithm challenges and how they are
remedied.

2.2.2 Coevolutionary Algorithm Challenges and Remedies

Coevolutionary algorithms are challenging to work with because we have limited
understanding of their detailed dynamics. Their two populations and dynamic
solution concepts make them harder to interpret [8]. The search driver, i.e. the
selection pressure, is difficult to control because fitness measurements are only
estimates. Fitness estimation makes it hard to precisely determine whether the
algorithm is making productive progress [19]. The problem of local optima still
exists as it does with other EAs. The arms race we use coevolutionary algorithms
for, in fact does not automatically appear since tests can be uninteresting, or not
conform to some a priori goal [8]. This requires vigilant design and monitoring.

Coevolutionary search and optimization exhibits some unique pathologies that
again arise from fitness being measured as a result of one or more interactions.
One pathology is intransitivity, i.e. non transitive relations can exist between the
competing solution spaces [8]. For example, consider the intransitive cycle in Rock-
Paper-Scissors where Rock beats Scissors, Scissors beats Paper, and Paper beats
Rock [4, 8, 14]. Some intransitive pathologies are:

Red Queen Effect Two populations continuously adapt to each other and their
subjective fitness improves, but they fail to make any consistent progress along
the objective metric. Conversely, they do make progress but the fitness estimate
does not reflect this and falsely indicates a lack of progress [4].

Cycling The adversary (whether solution or test) drops some element of selection
pressure so abilities can be “forgotten” only to reuse them.

Transitive dominance One solution can be superior to a test that at the same
time is superior to the solution according to a different conflicting subjective
metric [4].

A general remedy to intransitivity is to maintain diversity and make sure an
informative search gradient is always available. Another remedy is to explicitly
assure that useful tests persist. This can be accomplished by introducing memory.
Memory is usually implemented by means of an archive (see Fig. 3), a repository of
solutions that is maintained outside the algorithmic cycle of generational selection
and variation, something like a Hall of Fame.

Another pathology is disengagement [4]. This occurs when one population is
constantly superior to the other. At this point the subjective fitnesses of both
populations become constant so there is no differential selection pressure and the
search gradient is lost. Drift results. Memory also helps address disengagement.
Another remedy is to search explicitly for lower difficulty tests by looking for those
which create less disagreement among solutions [4].

Memory, of course, also addresses cycling by preventing a test that selects for a
solution from evolving out of the population.



Grammatical Evolution with Coevolutionary Algorithms in Cyber Security 413

Fig. 3 A coevolutionary
algorithm with two archives
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2.3 Coevolution and Grammatical Evolution

GE has previously been used in tandem with coevolutionary algorithms. In one use
case, [7], coevolution and GE are used together to cope with dynamic environments.
The GEGE method aims to find “modules” that can be reused when the environment
changes, it has a compact representation of a larger grammar with an increased
search space and strongly coupled grammars [3]. It uses cooperative coevolution
to simultaneously evolve the grammar and genetic code with a hierarchy of
grammars [7].

One study, [17, 18], used both GE and a Pareto-coevolutionary algorithm in
a supervised machine learning context to train classifiers with a multi-objective
fitness measure. It trained the classifiers via a two-population competition. Another
study used both GE and coevolution to develop an Artificial Life model for evolv-
ing a predator–prey ecosystem of mathematical expressions [2]. Coevolutionary
algorithms with GE have also been applied to financial trading using multiple
cooperative populations [1, 9].

In one competitive coevolution and GE example, spatial coevolution in age-
layered planes evolves robocode for robots [11]. In another, in the STEALTH
(Simulating Tax Evasion And Law Through Heuristics) [12] project, a coevolution-
ary and modeling methodology is used to explore how non-compliant tax strategies
evolve in response to abstracted auditing and regulatory attempts that evolve to
detect them. STEALTH shares the arms race element of this chapter’s work because
in taxation, similar to cyber security, as soon as an evasion scheme is detected and
stopped, a new, slightly mutated, variant of the scheme appears.



414 E. Hemberg et al.

3 Methods

In this section we describe the methods we use. We present them in the follow-
ing order: peer-to-peer networks in Sect. 3.1, the RIVALS network simulator in
Sect. 3.2, coevolutionary algorithms that use archives in Sect. 3.3 and grammar
representations for cyber security in Sect. 3.4. Because grammars are expressions
of problem solving behavior, Sect. 3.4 also introduces the two problems we use to
demonstrate RIVALS.

3.1 Peer-to-Peer Network

DDOS attacks often target a specific server within a network. By overloading this
server with work, the server effectively becomes useless and the network struggles
to route traffic through it. In a centralized network an attacker could attack its
key central server, e.g. the server that is responsible for directing traffic to all the
other servers, and take down the entire network. Peer-to-peer networks are not so
fragile. They distribute data and resources with redundancy and thus have no single
point of failure making them inherently more robust to DDOS attacks. Peer-to-
peer networks are also robust to topological changes. They can continue to function
even as nodes drop out as what may happen during a DDOS attack. They also can
integrate additional nodes should they come back online. As an example, the Chord
protocol includes a stabilization service handles nodes that are joining and leaving
the network.

3.1.1 Chord Overview

We now briefly describe important elements of the Chord protocol (for more details
see [22]) and our implementation of it. A peer-to-peer network is an overlay of a
physical network. In Chord the logical network topology is a ring. Location-wise,
each peer has a successor node and a predecessor node in the ring. Requests for
data from a node need to be looked up to identify which node has the data and
the node needs to be efficiently accessed. For lookup Chord uses distributed key
hashing. For routing Chord relies upon node-based finger tables. A finger table is
a look-up table for neighboring peers. Each table holds information that helps to
logarithmically decrease the cost of finding which node holds a queried key. The
Chord protocol includes a stabilization service handles nodes that are joining and
leaving the network.
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3.2 RIVALS Network Simulator

In RIVALS we currently model Chord on a single workstation. Upon nodes leaving
or joining the network, the original Chord protocol eventually stabilizes itself
through periodic actions. In RIVALS’ implementation every time a node leaves or
joins the network, successor and predecessor pointers as well as the finger tables are
immediately repaired. In RIVALS nodes in the Chord network become part of the
circle by receiving an m-bit identifier obtained by hashing the nodes with SHA-1.1

The network simulator has two versions. One version, we call the “logical”
version, and the other the “logical to physical” version. The differences between
these two versions of the software are explained in the next two subsections.

3.2.1 Logical Network

The reason we name this version the “logical” version is because we assume the
message gets sent via the hop series defined by the logical network. Figure 4 shows a
simple physical network on the left, and the virtual (logical) Chord overlay network
that gets constructed by the protocol on the right. In this example, if we are interested
in finding a specific key in the network, we can ask any peer and that peer will use
its finger table information to route the query to some peer that is closer to the
target peer containing the desired key in the identifier circle. This series of queries

Fig. 4 Physical network on the left and its virtual(logical) Chord overlay representation on the
right. The finger tables for nodes A, G, and F are shown

1In RIVALS’ implementation, Python’s random library is used.
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provides a hopping series of the nodes visited before reaching the target node with
the key. For example, if we ask node F where the key with identifier 3 is, it would
pass the query to node A, and then node A would find that the key is located at
node C. This results in a hopping series of F, A, C. In the simulator implementation,
rather than use the protocol as a means of finding a key in the network, we use it as
a means to represent the sending of a message through the network. We achieve this
by asking the peer we consider the starting node, or the node responsible for sending
the message, to find the identifier associated with the target node. In this sense, the
difference is that we now use the protocol to lookup target node identifiers instead
of key identifiers.

3.2.2 Logical to Physical Network

The key difference between the “logical” version and the “logical to physical”
version of the simulator is that this version increases the complexity and realism by
simulating messages flowing through the physical layer of the network as opposed
to just through the virtual Chord overlay ring. As a result, in this version, when
sending a message, instead of modeling this as the message hopping through the
ring and reaching its destination, each hop from one node to another overlays the
message passing from the equivalent nodes but along the routes and routers of the
actual physical network.

3.3 Coevolutionary Algorithms with Archives

In RIVALS we use multiple solution concepts and coevolutionary algorithms with
GE, see Table 1. Our baseline algorithm, named Coev, is a simple coevolutionary
algorithm without an archive [12] that uses a maximum expected utility solution
concept. When it is configured to use a best worst solution concept instead, we
call it MinMax. A third algorithm, MaxSolve uses the maximum expected utility
solution concept and both a solution and a test archive [6]. It manages archive
growth with a hard maximum size limit. Upon reaching maximum size, it winnows
the archive according to how many attacks a defender resists or vice-verse, how
many defense an attack is effective against. Our fourth algorithm is Incremental

Table 1 Coevolutionary
algorithms used in RIVALS

Name Archives Solution concept

Coev 0 Maximum expected utility

MinMax 0 Best worst case

MaxSolve 2 Maximum expected utility

IPCA 1 Pareto optimality

rIPCA 2 Pareto optimality
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Algorithm 1: IPCA, rIPCA
1: procedure IPCA(populations, generations)
2: t ← 0
3: D0 ← populationsdefenders & Defender is solution
4: A0 ← populationsattackers & Attacker is test
5: D∗, A∗ ← ∅ & Best solutions
6: while t < generations do & Iterate for # generations
7: At ← NonDominated(Dt , At ) & Extract attacker pareto-front
8: if rIPCA then
9: Dt ← NonDominated(At ,Dt ) & Extract defender pareto-front

10: D ← GenerateDefenders(Dt )

11: A ← GenerateAttackers(At )

12: A′ ← UsefulAttackers(A,At ,D,Dt ) & Get useful attackers
13: At+1 ← At+1 ∪ A′
14: Dt+1 ← Dt

15: for i = 1..|D| do
16: if UsefulDefender(Di,D

t+1, At+1) then & Get useful defenders
17: Dt+1 ← Dt+1 ∪Di

18: if Dt+1 �= Dt then
19: t ← t + 1
20: D∗, A∗ ← ExtractBest(Dt+1, At+1)

21: return D∗, A∗ & Returns best solutions found

Pareto-Coevolution Archive technique (IPCA), shown in Algorithm 1. IPCA uses
a solution archive and the Pareto Optimal Set solution concept [5]. The archive is
maintained by selecting solutions that are not dominated by other solutions in terms
of which tests they solve, i.e. are useful. That is, if a solution, X, only solves tests
A and B, and solution, Y , only solves test A, then solution X dominates Y and Y is
removed from the archive. This provides monotonic evolutionary progress. Finally,
our fifth algorithm is rIPCA, an extension of IPCA [10]. rIPCA applies the Pareto
Optimal Set solution concept to both solution and test populations, as opposed
to just the solution population as done in IPCA (see Algorithm 1 line 9). This
unfortunately erases the monotonicity property of IPCA but it provides memory
to both adversaries, rather than just one. For more details of rIPCA see [10]. In
both IPCA and rIPCA we consider a solution to be a defense and a test to be an
attack.

3.4 Problems and Grammars in RIVALS

RIVALS uses grammars to facilitate the expression and exploration of attack
sequences and defender strategies. The grammars are very helpful in allowing
domain knowledge to be naturally expressed. The ease of use of GE currently
outweighs our concern regarding the low locality of GE operators [24]. We have
two central grammars which each correspond to a problem we experiment with.
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Fig. 5 Mobile asset placement problem example. (a) Physical network. (b) Virtual network with
three tasks. (c) Virtual network with three tasks and the node 3 attacked. The task depending on
node 3 fails. Dashed lines indicate the assets that are needed for the different tasks

3.4.1 Mobile Asset Placement

The mobile asset placement problem is to optimize the strategic placement of assets
in a network. In a mission scenario we assume this optimization is determined before
a mission and that the optimization only addresses assets which can feasibly be
moved from one node to another or spun up at different nodes, i.e. that are “mobile”.

While under the threat of node-level DDOS attack, the defense must enable a
set of tasks. It does this by fielding feasible paths between the nodes that host the
assets which support the tasks. A mobile asset is, for example, mobile personnel
or a software application that can be served by any number of nodes. A task is,
for example, the connection that allows a personnel member to use a software
application. We show the concept of a task as a dashed line connecting nodes in
Fig. 5. Attacks are models of DDOS attacks where a variable number of specific
nodes are targeted and disabled. Any disabled node is considered unreachable. Thus
an attack, to cause mission failure, must take down the nodes which host assets that
support the tasks.

For example in Fig. 5 there are three tasks that need to be completed using six
different assets. The physical network topology of the example is shown in Fig. 5a.
The virtual (logical) overlay with the three tasks and assets are shown in Fig. 5b. An
attack that results in a failed task on the network is shown in Fig. 5c.

To round out the definition of a problem it is necessary to state the fitness function
of the attacker and of the defender. We state these in Sect. 4.2.

In the problem’s defense grammar, each task is defined by its assets and where
they are hosted. We currently assume a one-to-one mapping between assets and
node identifiers, i.e. the node identifier is the same as the asset identifier.

The attack grammar for Fig. 5a, Topology 0, given start symbol <Attacks> is:

<Attacks> ::= DDOSAttack(<node>)
| DDOSAttack(<node>), <Attacks>

<node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6
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The corresponding grammar for the defending population with start symbol
<list> is:

<list> ::= [Task1(<assets1>, <assets1>), Task2(<assets1>, <assets1>),
Task2(<assets1>, <assets1>), Task3(<assets1>, <assets1>),
Task5(<assets1>, <assets1>), Task6(<assets1>, <assets1>)]

<assets1> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

Note that by defining different sets of assets the grammar can express constraints
as to where assets can be hosted. By defining different nodes in the attack grammar,
it is possible to express only the nodes reachable by the set of botnet compromised
nodes. Also note that while the grammars are low level abstractions of attacks or
defenses, this allows generality in the sense that they belie any number of mission
or attack goals, strategies, techniques and tactics at a higher level by the attacker
or defender. Finally, note that with a more complex simulator or an actual network
testbed, a simple grammar change could express task ordering and dependency.

3.4.2 Network Routing

The network routing problem is to complete a mission that is composed of tasks.
All tasks must complete for the mission to 100% succeed. Each task is completed if
source and destination nodes can be connected within a specified time interval, e.g.
a message can be sent between them.

The current RIVALS attack grammar for describing the behaviors in the network
routing problem is simple. An attack is one or more identifications of a node,
when it will start to be attacked and the duration of the attack. Given start symbol
<Attacks>, it is:

<Attacks> ::= DDOSAttack(<node>, <start_time>, <duration>)
| DDOSAttack(<node>, <start_time>, <duration>), <Attacks>

<node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6
<start_time> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<end_time> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Note that the grammar is recursive and this allows an attack to target one or more
nodes.

An example of the attack grammar used in the logical to physical version of the
simulator upon receiving the start symbol <Attacks> is:

<Attacks> ::= {’physical_attacks’: [<physical_attacks>],
’logical_attacks’: [<logical_attacks>]}

<physical_attacks> ::= DDOSAttack(<node>, <start_time>,
<duration>), <physical_attacks>

| DDOSAttack(<node>, <start_time>,
<duration>)
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<logical_attacks> ::= DDOSAttack(<node>, <start_time>,
<duration>),<logical_attacks>
| DDOSAttack(<node>, <start_time>, <duration>)

<node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6
<start_time> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<end_time> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

In this grammar, because both the physical and virtual networks are utilized to
represent the flow of a message, an attacker is allowed to target nodes at both the
physical and virtual layers. The defense grammar in both versions of the simulator
is simple because the problem assumes just three high level routing mechanisms
(see Sect. 4.2.2). The grammar just chooses between them. This grammar, given the
start symbol <Defense> is:

<Defense> ::= shortest_path_protocol
| flooding_protocol
| chord_protocol

4 Experiments

We conduct experiments using the RIVALS network simulator to demonstrate the
combination of GE and coevolution for network related cyber security. The network
simulator for our peer-to-peer network allows us to define three increasingly
complex topologies and address two different problems for each of them. Each of
these six combinations is what we call a scenario.

These experiments provide insights into how the algorithms perform as well as
how they can scale over the different topologies. We present our experimental setup
in Sect. 4.1 and scenarios in Sect. 4.2.

4.1 Experimental Setup

We experiment with a suite of 5 coevolutionary algorithms all with the same
modular GE capability. They are presented in Table 1 and described in Sect. 3.3.
Each experiment is one algorithm run 30 times (each time from different random
initial conditions). Parameter settings for each run are presented in Table 2.
Population and archive sizes reflect the search space size and time cost of running
the network simulator. Other parameters are standard. We present results that are
averaged over the 30 runs.

We perform our tests on an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
processor with 24 cores with 96GB of RAM. Tests are performed serially for greater
accuracy and to eliminate any possible interference between tests. We report the
execution time and the fitness of the best defender at the last generation as the final
performance.
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Table 2 Coevolutionary algorithm settings for the problems

Parameter setting Value Description

Population size 40(10 Topo 2) Number of individuals in each population

Archive size 20 Max archive size (MaxSolve)

Generations 20 Number of times populations are evaluated

Max length 20 Max length of individual integer string

Parent archive probability 0.9 Probability of choosing parent from
archive (MaxSolve)

Crossover probability 0.8 Probability of combining two individual
integer strings

Mutation probability 0.1 Probability of integer change in individual

Coevolutionary algorithms specific settings are in brackets

4.2 Scenarios

Each network simulation or “run” explores one of six scenarios. A scenario is
defined by a network topology and a problem. A problem is defined by objectives
for the defender and attacker, their behaviors, which are expressed by grammars,
and their fitness functions.

4.2.1 Network Topologies

The experimental topologies range in size and complexity. In order to keep the
network simulation simple, we assume that every edge is unit-length.

Topology 0 We start with a simple topology, see Fig. 5a, that functions as a
benchmark allowing us to explore simple mission scenarios exhaustively before
scaling up to larger and more realistic topologies.

Topology 1 See Fig. 6. This topology has 25 nodes, arranged in four subnets
with four nodes conceptually functioning as fully connected subnet routers. All
25 nodes are mapped to the logical peer-to-peer ring. Topologies 1 and 2 are
assumed to be too large to conveniently enumerate all the combinations of attacks
and defenses.

Topology 2 See Fig. 7. This topology has 36 nodes modeling subnet routers
placed across a large geographic area. All 36 nodes are mapped to the logical
peer-to-peer ring with an assumption that they serve sub nets that are not on the
ring.

4.2.2 Problems

Each scenario solves one of two problems.
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Fig. 6 Topology 1, larger network providing more nodes and a different topology

Fig. 7 Topology 2, possible network for a more realistic mission

1. Mobile Asset Placement This problem deals with the placement of network
assets to serve tasks that support a mission. Optimal placement of the assets will
minimize connectivity loss in an encounter with an attack. See Sect. 3.4.1 for the
grammars and further details. The current version of the problem has six tasks.
Each task uses two assets.
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Attacker Fitness Function

f MAP
a = n_f ailed

n_tasks
− C

n_attacks

n_tasks

n_tasks is the total number of tasks, n_f ailed is defined as how many tasks
the attacker was able to disrupt, and n_attacks is the number of attacks the
attacker used, C = 1/1000. This incentivizes attackers to disrupt tasks but
with as few attacks as possible.

Defender Fitness Function

f MAP
d = n_successf ul

n_tasks
− n_same_nodes − n_duplicate_tasks

n_tasks is the same as before, n_successf ul is defined as the total successful
tasks, n_same_nodes is the number of tasks such that the start and end node
are the same (path to self), n_duplicate_tasks is the number of duplicated
tasks. This incentivizes defenders to succeed at as many tasks as possible
while penalizing approaches that use trivial tasks (same start and end node) or
duplicate tasks.

2. Network Routing This problem defines a mission as the completion of tasks
that successfully send a message between source and destination nodes within
a specified time interval. Tasks represent different elements of a mission, e.g.
coordination via chat between two users, using Internet Relay Chat (IRC), or
transfer of a file using File Transfer Protocol (FTP) from one user to a server.
A mission is successful if every task is completed one after the other in the
time allowed per task. It is unsuccessful if any of the tasks of the mission fail.
Currently, missions are limited to one task to allow us to reason about the results
obtained. See Sect. 3.4.2 for the grammars.
Network Routing can be solved with either a “logical” or “logical and physical”
network simulation. This does not change the fitness function of the defender
but it does change that of the attacker. We first describe the defender’s routing
protocol choices and fitness function. Then we describe the attacker’s fitness
function assuming a “logical” network simulation where all hops occur just on
the logical ring network. We then explain the difference between the two types
of simulations and consequently provide the attacker’s fitness function for the
“logical and physical” simulations.

Defender Routing Protocols The defender chooses among 3 different routing
protocols that use shortest path, flooding or Chord’s finger tables.
Shortest path protocol: At the beginning of a task, the network calculates

the shortest path from a start node to an end node, and attempts to send
the packet along this path. If at any point along the way the path becomes
blocked due to node failure caused by an attacker, the network waits for
the blocked node to become free before continuing. This protocol is more
expensive in terms of time when a network is under attack. It is also more
vulnerable to single nodes being attacked.
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Flooding protocol: The flooding protocol works by sending multiple
copies of the packet along all available paths and completes the task
when the first packet reaches its destination through any of these paths.
This is more expensive in hops but could be cheaper in time when under
an attack.

Chord protocol: Chord chooses paths using its finger tables. Even under
attack, its routing persists due to its stabilization when a node is lost or
returns to service (see Sect. 3.1).

Defender Fitness Function We reward defenders that complete the mission
quickly and with few hops and punish those that take longer and use more
hops. For example, the flooding routing mechanism gives a better guarantee
that the mission will be completed than the shortest path protocol, but floods
the network and thus uses many hops around the network to do so. This
behavior is taken into account into the fitness function and punished. The
fitness function for the defender is

f L
d = mission_success

overall_t ime · n_hops

where overall_t ime is the total time a specific routing protocol took to
complete the mission and n_hops is total number of hops taken by the
protocol to complete the mission.

Attacker Fitness Function on Logical Network We reward attackers for
being able to disrupt a mission by attacking very few nodes for a short
amount of time and punish attackers as the number of nodes and for how long
they attack them increases. The fitness function for the attacker is

f L
a = 1−mission_success

(n_attacks · total_duration)+ n_attacks

where mission_success describes whether the entire mission succeeded(1)
or failed(0), n_attacks is the total number of nodes attacked in the network,
and total_duration is the aggregated amount of time nodes were attacked.
We include an additional n_attacks term in the denominator so as to prefer
solutions with least amount of attacks.

Attacker Fitness Function on Logical to Physical Network This type of
simulation is only relevant to routing with the Chord protocol. If a node
finds cannot make a hop to another node in the ring, it scans its finger table
to find the node produces the largest hop and is available. How we reward
attackers changes because both logical nodes and physical nodes are available
for attack. Given a definition that n_nodes = n_physical + n_logical, the new
fitness function for attackers is:

f PL
a = 1−mission_success

n_nodes + (2 · n_physical · p_duration)+ (n_logical · l_duration)
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In this equation, mission_success still represents whether the mission
succeeded (1) or failed (0), n_physical describes the number of attacks
launched on nodes in the physical layer, n_logical represents the number of
attacks launched on nodes in the virtual layer, p_duration represents the total
aggregated time nodes in the physical layer were under attack, and p_logical

represents the total aggregated time nodes in the logical layer were under
attack. This fitness function penalizes attacks launched on the physical layer
more heavily because taking out a node in the physical layer can require more
effort than taking out the corresponding node in the virtual layer.

5 Results

Our first question compares the algorithms. In terms of the performance (best
defender fitness) and execution time of the different ones, is the rIPCA algorithm
an improvement upon them? Since it builds upon IPCA by using the same archive
maintenance strategy for the solutions as IPCA uses for the tests, can it evolve
better solutions? Or, because the monotonic progress guarantee of IPCA’s archive is
displaced by the second archive, will rIPCA evolve comparable or worse solutions?
IPCA’s archive keeps every solution (to guarantee monotonic fitness trajectory).
Can the cost of monotonic progress be simultaneously lowered without significant
loss of performance?

Our second question is specific to the network routing problem. In terms of the
algorithms’ performance, would each of them be able to consistently and correctly
identify the Chord protocol implementation as the network defense mechanism that
is best able to handle network attacks?

5.1 Mobile Asset Placement

We collected timing and performance results for the mobile asset placement
problem. In Table 3 we show the averaged results over 30 runs for each topology and
algorithm. We see that rIPCA has high execution time variance and that IPCA and
rIPCA both yield high performance with rIPCA’s being slightly lower. We observe
that IPCA has a significantly longest execution time in all topologies, however as
the network size grows performance becomes more similar.

Next, in Fig. 8, we show how each algorithm progresses over time on Topology 0.
IPCA’s trajectory shows its expected monotonic increasing performance and also
has the highest average final performance. rIPCA, while not the best algorithm,
is second in average final performance while consistently performing better in
execution time (refer to Table 3).
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Table 3 Mobile asset placement execution time and final defender fitness (averaged over 30 runs)

Algorithm Exec time (s) Final Perf.

Topology 0

Coev 10.616± 0.444 0.132± 0.042

MinMax 8.603± 1.511 0.017± 0.050

MaxSolve 11.256± 0.507 0.282± 0.067

IPCA 24.661± 1.855 0.461± 0.069

rIPCA 8.079± 0.967 0.333± 0.166

Topology 1

Coev 6.092± 1.249 0.380± 0.154

MinMax 4.213± 0.369 0.267± 0.200

MaxSolve 8.327± 0.429 0.267± 0.200

IPCA 12.990± 1.563 0.805± 0.063

rIPCA 5.932± 0.950 0.695± 0.259

Topology 2

Coev 1.784± 0.328 0.182± 0.074

MinMax 1.482± 0.157 0.150± 0.094

MaxSolve 2.280± 0.127 0.184± 0.069

IPCA 4.188± 0.276 0.338± 0.074

rIPCA 2.245± 0.394 0.276± 0.132

5.2 Network Routing: Logical Simulation

Prior to running the experiments with the network routing problem, we exhaustively
searched Topology 0 (Fig. 5a) for a solution. To do this, we set attacks to last the
full duration of a task. We saw that Chord only fails if all the nodes are blocked.
Shortest path fails if any node on the shortest path is blocked. Flooding fails if a
start node is blocked, or an end node is blocked, or when at least one node in every
path is blocked. This information provided us with a baseline of comparison outside
the algorithms and it allowed us to verify algorithm correctness. It also points out
that exhaustive search is possible in topologies with a small number of nodes and
becomes increasingly difficult for a topology as large as the ones in Figs. 6 and 7.

We run the network routing mission simulation over 30 runs and then collect the
average over the results. In Table 4 we show the average and standard deviation
of both the wall-clock execution times as well as of the best fitness values per
generation. We first consider Topology 0. The algorithms show different results,
with IPCA and rIPCA showing superior average final performance. We conjecture
this is due to the test archives for both IPCA and rIPCA as these archives help
enforce monotonic performance increases. When looking at Topologies 1 and 2,
we do not see much difference between the algorithms. This is due to the fact that
the topologies are much larger in this case and the defenses are not as versatile.
However, rIPCA is on par or better than IPCA in terms of execution time.
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Fig. 8 Best fitness value average (over 30 runs) per generation for 20 generations on the mobile
asset placement problem. Algorithms compared: IPCA, rIPCA, Coev, MinMax, MaxSolve

In Fig. 9, we examine the average fitness values for both attack and defense
populations from one Coev run over Topology 0. In the attacker’s average fitness
plot, the average fitness for the attack population experiences a short increase in
performance then quickly drops to 0. It then oscillates as the defense population
converges on Chord. The variation in the algorithm allows non-optimal (i.e. non-
chord) solutions to form part of the defense population. This, in turn, increases the
average fitness of attacks as they face defenses which they can succeed against.

The network routing mission experiments show that IPCA and rIPCA perform
better but are better suited at handling tasks where execution time isn’t as important.
We also show through our implementation of these coevolutionary algorithms that
it is possible to model adversarial behavior on a network simulator. As expected,
coevolution does not yield as strong defenders as for a fixed attack [10].

5.3 Network Routing: Physical and Logical Simulation

In these experiments, see Table 5, the trends in the defender fitness values across
the topologies and algorithms closely resemble the trends we noted in Table 4. The
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Table 4 Network routing execution time and final defender fitness on logical topology (averaged
over 30 runs)

Algorithm Exec time (s) Final Perf.

Topology 0

Coev 10.417± 1.650 0.091± 0.014

MinMax 9.802± 1.693 0.045± 0.028

MaxSolve 20.945± 1.336 0.088± 0.022

IPCA 66.576± 6.537 0.097± 0.021

rIPCA 47.754± 8.108 0.128± 0.055

Topology 1

Coev 36.911± 13.290 0.008± 0.001

MinMax 34.745± 10.351 0.005± 0.002

MaxSolve 12.322± 19.236 0.007± 0.001

IPCA 266.382± 59.253 0.008± 0.000

rIPCA 267.784± 69.347 0.008± 0.000

Topology 2

Coev 180.114± 80.664 0.005± 0.000

MinMax 158.955± 72.101 0.004± 0.001

MaxSolve 768.817± 342.642 0.005± 0.001

IPCA 1729.165± 623.941 0.005± 0.000

rIPCA 1566.194± 643.867 0.005± 0.000

difference, however, upon inspecting the outputs of the algorithms, is that rather than
algorithms converging to the Chord protocol as the best solution for the defender, it
varied in Topology 0 and Topology 1 between the Chord protocol and the flooding
protocol. In the largest topology, the flooding protocol was always found by all of
the algorithms as the best defender. Given these results, it is possible to recognize
that increasing the complexity of the simulator to traverse the physical network
between two nodes for every hop between the corresponding nodes in the virtual
layer increased the number of hops the Chord protocol took to get the message to
the destination. We also observed that the shortest path never evolved as a final
solution. This indicated that the Chord protocol and the flooding protocol are more
robust in terms of withstanding attackers.

6 Conclusions and Future Work

We have shown how to combine Grammatical Evolution and competitive coevolu-
tion so that it is possible to investigate adversarial problems and cyber arms races.
In particular, we focused on network defenses and DDOS attacks. We grounded our
work by considering peer to peer networks, specifically the Chord protocol, and
node loss. Grammars were convenient for representing the search space of defender
and attacker actions and we have embedded a GE module in each of our coevolu-
tionary algorithms. When we use our system to solve different problems, we only
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Fig. 9 Results from a Coev run for network routing on logical topology on network topology 0.
Top: Median and best fitness results for attacker population over 20 generations. Bottom: Median
and best fitness results for defender population over 20 generations

Table 5 Final defender fitness on each topology with physical and logical simulation (averaged
over 30 runs)

Topology 0 Topology 1 Topology 2

Algorithm Final Perf. Final Perf. Final Perf.

Coev 0.079± 0.010 0.007± 0.001 0.005± 0.000

MinMax 0.053± 0.023 0.004± 0.001 0.004± 0.001

MaxSolve 0.061± 0.018 0.006± 0.001 0.002± 0.001

IPCA 0.082± 0.009 0.007± 0.000 0.005± 0.001

rIPCA 0.095± 0.027 0.008± 0.001 0.005± 0.001

have to change the BNF grammar, the interpreter and the fitness function for each
problem, rather than change the genotype representation. This modularity of GE
and the reusability of the GE parser and rewriter are efficient software engineering
and problem solving advantages. The grammar further helps us communicate with
application domain stakeholders and increases their confidence in solutions and our
system.
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We have made progress in creating an end-to-end system where we have shown
the ability to test the effectiveness of the different coevolutionary algorithms on
simulated networks. We plan to continue this work and have ambitious goals laid out
for future versions of RIVALS. In particular, we are interested in defending against
low intensity DDOS attacks[15]. Attacks like these are hard to detect because they
can be sent in small waves and thus are not easy to spot amongst regular traffic
patterns. One element of future work is to extend the Chord protocol. Others include:
experimenting with more scenarios, generating more complex missions, e.g. with
different numbers of tasks and creating a compendium approach to pooling attacks
and defenses from multiple runs to more explicitly choose an overall most robust
defense. Finally, we will continue to improve the grammars, performance and speed
of the coevolutionary algorithms.
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Evolving Behaviour Tree Structures
Using Grammatical Evolution

Diego Perez-Liebana and Miguel Nicolau

Abstract Behaviour Trees are control structures with many applications in com-
puter science, including robotics, control systems, and computer games. They allow
the specification of controllers from very broad behaviour definitions (close to the
root of the tree) down to very specific technical implementations (near the leaves);
this allows them to be understood and extended by both behaviour designers and
technical programmers. This chapter describes the process of applying Grammatical
Evolution (GE) to evolve Behaviour Trees for a real-time video-game: the Mario
AI Benchmark. The results obtained show that these structures are quite amenable
to artificial evolution using GE, and can provide a good balance between long-
term (pathfinding) and short-term (reactiveness to hazards and power-ups) planning
within the same structure.

1 Evolving Behaviour Trees for Game Playing Control

The objective of this chapter is to demonstrate how Grammatical Evolution
(GE) [1] can be used to evolve control structures for agents that interact in highly
dynamic environments. An example of this application is the control of Non-Player
Characters (NPCs) in computer games. These are highly dynamic environments,
where NPCs must be able to react efficiently and effectively in previously unseen
scenarios. In the concrete case of real-time games, these agents must be able to
perform actions in a limited time budget, typically in just a few milliseconds. These
actions must tackle both dynamic (enemies, power ups, moving structures) and static
(level structure, path-finding) elements in the game. This requires the agent to be

D. Perez-Liebana (�)
School of Electronic Engineering and Computer Science, Queen Mary University of London,
London, UK
e-mail: Diego.Perez@qmul.ac.uk

M. Nicolau
Natural Computing Research and Applications Group, University College Dublin, Dublin, Ireland
e-mail: Miguel.Nicolau@ucd.ie

© Springer International Publishing AG, part of Springer Nature 2018
C. Ryan et al. (eds.), Handbook of Grammatical Evolution,
https://doi.org/10.1007/978-3-319-78717-6_18

433

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78717-6_18&domain=pdf
mailto:Diego.Perez@qmul.ac.uk
mailto:Miguel.Nicolau@ucd.ie
https://doi.org/10.1007/978-3-319-78717-6_18


434 D. Perez-Liebana and M. Nicolau

able to react to imminent hazards, as well as devising action plans to accomplish the
goals that lead to winning the game.

An example of a platform game with these characteristics is the Mario AI
Benchmark [2, 3]. In this environment, the goal is to reach the end of the level,
avoiding (or killing) enemies or other hazards that may harm the player. The
agent (Mario) must react to dynamic events that happen at close distance, and also
plan ahead to make progress in the level. Section 3 describes this benchmark, the
environmental information and the avatar effectors.

These two components, reactiveness and navigation, are closely related in this
game environment: both make use of the same set of actuators (or actions) that
Mario can employ. Section 4 describes two different approaches for tackling them,
one using the same actuators for both needs, and another providing different sub-
behaviours that deal with them separately.

Previous studies [4] have successfully applied GE to evolve Behaviour Trees
(BTs) [5] for the Mario AI Benchmark. A BT is a tree structure composed of
different types of nodes, including control nodes that permit control over the flow
of execution, condition nodes that query the game state, and action nodes that
execute actions in the game. Section 5 describes how BTs work and how they
are implemented for the framework used in this study, and Sect. 6 details how to
implement these structures using GE.

A set of approaches is compared in terms of evolvability, generalisation, and
complexity of resulting controllers. Sections 7 and 8 describe the experimental study
and results obtained, with conclusions and recommendations for their applicability,
both to Mario AI and other dynamic environments, given in Sect. 9.

2 Related Work

This section reviews applications of GE to control environments including games,
other approaches to create controllers for the Mario AI benchmark, and applications
of BTs as game controllers.

From the onset, GE practitioners have used its grammar-based syntax specifi-
cation to solve a multitude of problems, including controllers for a diverse range
of environments. A typical example is the use of GE to solve the Santa Fe Ant
Trail problem [6], which rapidly became a typical benchmark over many years.
Other examples include its application to the Lawn-Mower problem [7], and its
combination with a gene regulatory network, to solve the pole-balancing problem
[8]. Regarding gaming environments, examples include the work of Galván-López
et al. [9], who evolved controllers for Ms. PacMan, and Harper [10, 11], who used
GE to co-evolve controllers for Robocode Tanks.

The application of GE to game environments is not limited to control agents,
however. Other interesting applications include the design and optimisation of horse
gate animations [12], and the design of levels [13] and personalised content [14] for
the Mario AI environment.
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Mario AI provides a suitable platform for research in the application of con-
trollers to dynamic environments. Multiple approaches that aim at maximising the
game score can be found in the literature. These include rule-based agents with
higher-level, hand-designed conditions and actions [15], cuckoo search and its
comparison with a standard genetic algorithm approach [16]), the evolution of finite-
state machines created with genetic algorithms [17, 18], Q-Learning with full game
information [19], Neural-Networks with Manifold Learning as a dimensionality-
reducing technique [20] and, finally, the combination of Monte Carlo Tree Search
with appropriate heuristics [21], creating agents that outperform the leading state of
the art controllers in this game.

Most game environments are highly dynamic environments, often resulting in
noisy fitness evaluation. This is also true for Mario AI, where a random seed
can vary the events and levels generated with the same difficulty level, presence
and absence of enemies, etc. There exists a large body of research in the area of
noisy fitness environments. A recent example of such studies are the works of Liu
et al. [22] and Kunanusont [23], who evolved game parameters for AI-assisted game
design in a search space with noisy and expensive evaluations.

BTs, initially introduced as a means to encode formal system specifications [5],
have gained popularity as a way to encode game controllers in a modular, scalable
and reusable manner [24]. They have now been used in high-revenue commercial
games, such as “Halo” [25], “Spore” [26], and other smaller indie games (such as
“Façade” [27]) illustrating their importance in the game AI community.

The evolution of BT structures has been explored in the work of Lim et al. [28],
where the authors used Genetic Programming [29] to evolve AI controllers for
the DEFCON game. In this study, the resulting agent played against the standard
DEFCON AI controller, achieving a success rate superior to 50%.

One of the main hurdles encountered in the work of Lim et al. was how to
exchange typed BT structures between individuals. This issue is easily dealt with
GE, which was also used to evolve BTs, as controllers for Mario AI [4]. The
current chapter details those experiments, giving insight on the actual process of
specifying the syntax of BTs through a grammar, and maximising the exchange
of coherent genetic material between solutions, increasing the effectiveness of the
search process.

3 Mario AI as a Dynamic Game Benchmark

Super Mario Bros is a popular two-dimensional platform game where the player
controls Mario, who must reach the right end of the level by avoiding enemies,
other hazards, and collecting bonus items and power-ups. Therefore, the Mario
AI benchmark exemplifies a highly dynamic environment with a final goal that
requires long term planning. This benchmark, an adaptation of an open source
version of Super Mario Bros (by Markus Persson), is used for the experimental
work developed for this chapter. The framework allows testing agents in multiple
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levels, customising them by difficulty, type (over or underground), length, time
limit, creatures (presence or absence), dead ends, and random seed for the automatic
generation of the level.

3.1 Game State Information

The playing agent is able to analyse the environment surrounding Mario by means
of two matrices, one providing information about the geometry of the level, and the
other indicating the presence of enemies.

The level of detail to be retrieved from both matrices can be set to three values:
Zoom 0 represents the world with a different integer for each entity in the game,
whereas Zoom 2 gives the simplest possible representation (1 meaning enemy or
obstacle presence, and 0 the absence of it). As a mid point, Zoom 1 provides the
information categorised in useful groups, such as enemies that can be killed by
stomping or shooting, different types of blocks, etc.

Mario itself can be in three different states during the game: Small, where an
enemy or hazard hit causes the player to lose; Big, reachable by eating a mushroom
from the Small state; and Fire, which permits the player to shoot fireballs. Being
hit by an enemy changes Mario’s state to the previous one. The benchmark also
provides information about the state of the agent, plus its location in the level and
extra information, such as if Mario is on the ground, if able to shoot, jump, or if
carrying a turtle shell. Additional information is also available, including the game
status (game running, won or lost), the time left to complete the level, the current
score and a set of kill statistics, including the number of enemies killed and how
they were eliminated (by stomp, by fire or by shell).

3.2 Game Actions

Mario can choose among several actions to be performed at each game step. These
actions include three directions (Left, Right and Down - Up has no meaning in this
implementation), Jump, and Run/Fire. If the agent is already moving right or left,
applying the action Run/Fire makes Mario move faster. If Jump and Run/Fire are
applied simultaneously, Mario jumps farther. Also, when in Fire mode, it makes the
agent shoot a fireball. Therefore, the set of possible actions defines an action space
of 25 = 32 actions (although some of these are nonsensical, such as left and right
pushed at the same time). As the agent is played in real-time, the action supplied at
each frame must be provided every 40 ms, or the agent will be disqualified.



Evolving Behaviour Trees with Grammatical Evolution 437

4 Mario Agents

The focus of this work is on the evolution of BT data structures that allow a
hierarchical decomposition of tasks, by means of GE. The evolved structures need
to be able to respond adequately to scenarios that propose dynamic hazards and an
overall goal. In the case of Mario, GE evolves a BT that combines the two required
aspects of the agent behaviour for this game, also identified in the introduction:
reactiveness (dealing with close enemies and hazards) and navigation across the
static elements in the level. Both were dealt with using basic game movements or
combinations of these. Tables 4 and 5, at the end of the chapter, show the routines
employed by GE, along with a brief explanation of each.

Two different approaches are analysed in this study, in order to assert the impor-
tance of the navigation component of the algorithm’s behaviour. Each approach use
a different set of routines. ReactiveMario (NoAstar) combines reactive and very
basic navigation commands, while PlanningMario (Astar) uses A* for navigation
in order to let the GE focus on the reactive part of the behaviour. Section 6 details
the general structure of the evolved BTs and how reactiveness and navigation are
integrated into a single approach.

4.1 A Reactive Mario

In this approach (NoAstar), the agent is exclusively focused on reacting to moving
elements in the game, without employing any explicit path-finding. Therefore, the
elements considered are the position of enemies and hazards, such as goombas,
bullets, flying turtles, bonus mushrooms and fire flowers. GE is used here to evolve
a BT that avoids these entities and navigates the agent through the levels. This
controller, submitted to the Gameplay track of the 2010 Mario AI Competition,
ranked 4th out of 8 entries [3] in this contest.

In this edition, one of the most difficult navigational hazards were dead ends. In
those, the level presents more than one way to move ahead, but at least one of them
is a cul de sac. An example of one of these is shown in Fig. 1, where it can be seen
that the cul de sac is longer than the size of the environmental matrix. Two sub-trees
(UseRightGap and AvoidRightTrap, see Table 5) have been specifically designed by
hand to address this problem. The latter routine detects a dead end in front of Mario
and moves him back until there is no obstacle over his head. The former sub-tree
finds a platform which Mario can jump onto (or a gap to fall through), to overcome
the trap by running through the open part.
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Fig. 1 Mario and environmental information. Both matrices are of size 21×21, centered in Mario

4.2 A Planning Mario

This second approach (Astar) employs A* to guide navigation through the level,
while handing GE the task of dealing with reactiveness to the hazards of the game.
However, in order to use A* for navigation, the game level must be represented as a
navigable graph, a structure not supplied by the benchmark. Furthermore, due to the
nature of the game, this graph needs to be modifiable. Changes in the blocks (which
can be destroyed by Mario) or changes in the state of the avatar (i.e., from Big to
Small) can make some old paths invalid. Therefore, this graph must be generated
dynamically, at each step, by the agent. It is important to note that the map building
process is independent from the use of GE to evolve the playing agents and it is not
a functionality provided in the framework. The present section briefly summarises
this process.

4.2.1 Mapping a Level

The first problem when dealing with path planning is the world representation. As
the Mario AI Benchmark does not provide access to a complete map of the level, this
has to be built as Mario moves through it, using the environment arrays described in
Sect. 3.1. As this map is created for navigation, blocks that do not affect movement
(items, enemies or coins) are not taken into account. However, it is possible to add
meta-data information, such as the type of block (question or brick), enemies, and/or
collectible items, which can be later used for queries in the BT (Fig. 2).
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Fig. 2 Top: the original section of the level as seen in game. Bottom: the respective map generated
from the environmental matrix received by the agent

4.2.2 Nodes for Path Planning

Once a representation of the geometry of the level is available, a graph for the A*
algorithm can be built. Given the format of the data, the best solution is to build a
tile-based graph approximation.

The first decision is where to place the nodes (or vertices) of the graph within
the map; these nodes represent navigable spaces, i.e. positions where Mario can
stand. Figure 3 (left) shows the level structure (as squares) and the graph nodes (as
dots). It is worthwhile mentioning that this process identifies some nodes that are
not accessible (such as the nodes inside the ceiling of the dead end), but the next
step will filter these out of the graph in which Mario is located and can move.

4.2.3 Edges for Path Planning

Although most grid-based path finding networks consider the map as seen from a
zenithal perspective (i.e. from the top), this game requires the graph built as seen
from the player’s perspective, sideways to the level. This incorporates an additional
challenge, where horizontal and vertical edges cannot be used in the same way.

The edge creation process analyses the nodes to finish the graph construction,
using different types of links. The following links are available for the graph, which
are also shown in the example Fig. 3 (right).
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Fig. 3 Top: level structure (squares) and graph nodes (dots). Squares indicate different types of
block—question mark, brick, or solid. Bottom: navigation graph representation. Different types of
edges are Walk link (A), Jump link (B), Fall link (C), Faith jump link (D) and Break jump link (E)

• Walk links: These are the simplest ones, which can be used just by applying
the right (or left) actions. These edges are bidirectional.

• Jump links: Unidirectional upward edges that join nodes vertically separated
by no more than 3 cells and horizontally by 1 position. Therefore, they can be
used to jump to a node that is over the starting node (with a maximum jump
height) and one unit to the left or right.

• Vertical jump links: Some level formations can be jumped onto from below,
keeping the same vertical. For these structures, unidirectional upward edges are
created, which join nodes vertically separated by no more than 3 cells.

• Fall links: Unidirectional downward edges that join nodes vertically separated
by any number of cells and horizontally by 1 position. Some of these links
have as a counterpart a jump edge (some jump links can also be used to fall in
the opposite direction). This distinction is important, because while the former
have to be managed by jumping, the latter must be gone through moving in one
direction and managing the fall in order to land in the proper place.

• Faith jump links: Bidirectional edges that link two nodes horizontally sep-
arated by no more than 4 cells. These edges are used to link nodes that are
separated horizontally by more than one unit, and with a maximum vertical
distance. These can be, in some cases, hard jumps to make, because of the long
distance between starting and ending node.

• Break jump links: These are very similar to normal jump, but in this case there
is a brick block in the trajectory of the jump, in the vertical of the node where
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the edge starts. Because this block can (potentially) be destroyed, this link is
included in the graph as it can become a regular jump link. It is also possible
that the brick block does not break (becoming a solid block instead) and the link
cannot be used. In that case, as the map and graph are repeatedly generated, this
link will not be created again.

An important aspect of this game is that Mario can have different states (Big or
Small), and some edges can only be traversed if Mario is Small (only one cell is
required to pass through). This information is also included in the edges, and it is
used not only to traverse the graph, but also to compute the cost of the edges for A*.

The basic cost of an edge is calculated as the Manhattan Distance1 between its
nodes. The final cost is computed as the basic cost multiplied by a factor determined
by the link type. The reasoning is as follows: the factor of traveling an edge walking
must be higher than jumping, because calculating the jump and managing landing
takes longer and it has a higher associated risk (it is more likely to miss a jump than
a simple walk movement). The basic cost of each link is therefore multiplied by a
factor of 1.5 if the link involves a jump, with the exception of a break jump link,
which factor is 3.0 due to the extra cost involved in trying to break the brick.

Once A* can be used to generate paths to different positions in the level, it is
possible to design path finding routines for GE to use during the evolution of BTs.
The next section gives a definition of BTs, and how are they used for this game.

5 Behaviour Trees for Decision Making

Behaviour Trees (BT) are data structures that allow to decompose a complex
behaviour hierarchically in several sub-trees as tasks of reduced complexity. Their
applicability is broad in the fields of AI and technology, such as management
of control systems [30], robotics [31] and decision making behaviours in video-
games [24–26], an area in which BTs have achieved great popularity.

In fact, along with Finite State Machines (FSM), BTs are one of the most prolific
structures to implement complex Non Player Character (NPC) behaviours in games.
In contrast to FSMs, BTs are more flexible, scalable and intuitive, easier to develop
(even for non-technical developers and designers) and are able to incorporate
multiple concerns such as path planning and path following [32].

For example, a soldier NPC can have different behaviours, such as patrolling,
investigating and attacking. Each one of these tasks can be broken down in different
sub-tasks (movement tactics, weapon management or aiming algorithms), which
at the same time can be composed of lower level actions (playing sounds or
animations). In the robotics domain, high level goals can be broken down in sub-
goals, like recharging batteries or entering rooms, which in turn can be decomposed
in opening, closing and forcing doors [31].

BTs establish a descending order of complexity from the root to the leaves,
employing different node types. In the simplest implementation, all nodes can return

1The sum of absolute differences in Cartesian coordinates.
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success or failure to their parent node (although other versions could return real
values, enumerators, etc.). Nodes are divided into two major categories: the first
type is control nodes, which manage the flow of execution through the tree:

• Sequence nodes execute its children from left to right until one returns failure.
If all children return success, the sequence node itself also returns success.
Otherwise, it will return failure to its parent. These nodes are represented with
a right pointing arrow.

• Selector nodes execute its children from left to right until one returns success.
If all children return failure, this node will return the same to its parent, and
success otherwise. These nodes are represented with a question mark.

• Parallel nodes execute all its children in parallel. Termination conditions and
return values can be diverse (i.e. breaking and returning the value from the first
child to finish, returning a majority vote, etc.). These are typically represented
with parallel right pointing arrows.

• Decorator or Filter nodes modify the normal execution flow in different ways
(negating the value of its child node, loops, running a node until failure, etc.).
These nodes typically have only one child. Decorators are normally represented
with a diamond shape.

Leaf nodes are Conditions and Actions. The former query situations and features
of the current environment, while the latter apply moves in the scenario the agent is
in. Actions usually return success unless the action was not possible to be executed
for some reason, while the returned value of a condition node depends on the query
performed.

BTs can also incorporate handlers for data sharing and sub-behaviour re-use. For
the former, Blackboards allow passing information between nodes and trees, and it
is possible to introduce management mechanisms to coordinate access and usage of
resources. For the latter, it is possible to use look-up tables to build a BT library that
allows the designer to re-use sub-trees in multiple locations of the overall BT.

5.1 Behaviour Trees and Mario AI

Tables 4 and 5 (at the end of this chapter) include all conditions, actions, filters
and sub-trees designed for the agent, and available to the evolutionary algorithm.
Some sub-trees are only available for controllers without A*. These are used
for navigational purposes, which are taken care of by A* routines in the other
controllers. The leaf nodes described in these tables are also summarised here:

• Conditions: Used to provide information about the enemies (distance to the
avatar and their type) and obstacles in the map (type and position of the blocks).
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• Actions: The most useful action combinations are provided to the BT, based on
those described previously (see Sect. 3.2). Examples are Down, Fire, RunRight
(Right and Run both pressed), NOP (no buttons pressed) or WalkLeft. There are
also actions to request paths to specific locations, when using A*.

• Sub-trees: These units are indivisible and require a concrete sequence of moves
to be performed. Jumps are more effectively managed in sub-trees, as they
require a frame in which the jump button is not pressed before the jump action is
executed, and farther jumps can be made with consecutive repetitions of the key
being pressed. Sub-trees are achieved by combining different filter and action
nodes. Figure 4 shows the sub-tree to make long jumps to the right.

In this work, the BTs used are stored in XML files, with a hierarchical structure
that defines the type of each node and the operation that it represents. Figure 4
includes the (simplified) XML code of the sample sub-tree from this chapter. Note
that this implies that the GE grammar must be able to generate the behaviours in
this format.

6 Building Behaviour Trees with Grammatical Evolution

Figure 4 shows the complexity of the syntax of the BT Controllers. GE’s use of
grammars can ensure that the evolved controllers maintain syntactic correctness,
both keeping compatibility with the variety of BT control and leaf nodes, and also
incorporating domain knowledge (as explained below). This is possible through the
use of the grammar as an instrument to control of the syntax of solutions both in
terms of data-structures and biases [33, 34].

<?xml version=”2.0” encoding=”UTF−8”?>
<Node Type=”Sequence”>

<Node Type=”Action” Operation=”NOP”/>
<Node Type=”Filter” Filter Type=”Loop” Times=”9”>

<Node Type=”Action” Operation=”JumpRight”/>
</Node>

</Node>

Fig. 4 Sub-tree for executing long jumps to the right. NOP ensures no button is pressed before
the JumpRight command (Jump plus Right actions) is executed. The Loop filter makes sure
JumpRight is executed during a given number of frames. On the left, graphical representation.
On the right, BT XML Structure of this sub-tree
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6.1 Structure of a Behaviour Tree

The grammar employed to evolve BTs specifies the (XML) syntax, containing all
conditions, actions, sub-trees and filters designed. Earlier experimentation, where
GE was free to combine these nodes without a rigid structure, showed that the
evolved trees were badly structured (such as sequences of sequences, with NOP
actions at their leaves), not human-readable, and computationally demanding.

In order to avoid these issues, a constrained structure for the syntax of BTs
was imposed via the grammar. Although still variable in size, the BT structures
are contrived to follow an and-or tree structure [35], the recommended way of
building BTs for game AI [36]. Therefore, all evolved BTs have a selector node
at the root with a variable number of Behaviour Block (BB) sub-trees, each one
of them encoding a particular sub-behaviour. Each one of these BBs consists of a
sequence one or more conditions, followed by a sequence of sub-trees or atomic
actions.

The last child of the root node is an unconditioned BB, which is either a sequence
of actions and sub-trees, or a default navigation behaviour (when using the Astar
agent). Figure 5 exemplifies this structure.

Fig. 5 Structure of evolved BTs
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Fig. 6 Sub-tree for path finding. It calculates, if needed, the path to the rightmost position
available

The root selector starts with the leftmost BB at the beginning of the BT execution.
The BT will follow a left-to-right priority order in which each sub-tree will be
executed if its stated condition(s) are fulfilled. Hence, the right-most block is the
default behaviour, which will be executed in case all the previous conditioned BBs
fail to trigger. The conditions provided are complex queries to the game state, which
allows limiting the number of conditions associated to each BB to just one or two.
The number of actions and sub-trees on each BB is left unlimited.

The default behaviour (right-most block) depends on the navigation used:
without A*, it is simply composed of a sequence of actions, without associated
conditions. However, if A* us used, a particular sub-tree is provided. Figure 6 shows
this structure (sub-tree Default Go Right), which is composed of a selector
node, with two sub-trees, Default Path Planner and Path Follower.

Default Path Planner is composed of two sub-trees. Recalculate
decides if the default path has to be calculated; that can happen when no item is
being targeted, or when a path was set but is almost finished. Path Planner
(executed if the one before is successful) calculates the path to the rightmost position
in the map (the direction to follow to the end of the level). In the rare event where
a path is not found, Mario enters an emergency state: to keep moving, a default
forward jump is executed.
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6.2 Designing the Grammar

Given that each BB is a self-contained structure, due to the syntax described above,
it is reasonable to permit individuals to exchange these between them. Specific
crossover points were thus encoded into the grammar to allow this, using a special
grammar symbol (<GEXOMarker>) to label crossover points [37, 38]. These
constrain GE to only slice individuals according to these points, when applying
crossover; a two-point crossover was employed to guarantee this. Without these
markers, standard 1-point crossover would provide more exploration with less
exploitation; given the high cost of the fitness function, this trade-off was necessary.
This technique creates an operator similar to sub-tree crossover in GP, but allowing
the exchange of a variable number of behaviour blocks between individuals. Finally,
it is also possible for an individual to crossover with himself, which is equivalent to
a sub-tree swap operator. In the presented grammar, this is very useful to modify the
priority of a BB.

An extract of the grammar used (Astar variant) is shown in Fig. 7. The <BT>
symbol merely defines the XML prelude, while the <XMLPart> symbol provides
specific implementation BT tags. The following two symbols (<RootNode> and
<RootSelNode>) define the and-or tree selector root node.

Its contents are defined in <SeqsAndDefBB>: a set of sequences, followed by
the default behaviour. A first crossover marker is defined here, as the right-most
place at which crossover can occur (just after all the defined filtered sequences, but
before the default behaviour, which is equal for all individuals).

The set of filtered sequences (i.e. BBs) is defined by the symbol <SeqNodes>,
which is just a recursively defined list of one or more BBs. Each of them, however,
defined by <SequenceNode>, places a crossover marker at the start (i.e. left) of
the definition of a BB, allowing for the exchange of BBs between individuals.

The definition of the remainder of the XML syntax proceeds in a similar fashion,
and most of it is not shown for lack of space (the grammar is composed of 48
non-terminal symbols, and 541 lines). The definition of the Default Go Right
sub-tree is worth mentioning (symbol <DefaultGoRight>): GE grammars can
define a large sequence of text as a single terminal symbol.

7 Experimental Work

A series of experiments were ran to test several aspects of this approach. To
ascertain if BTs are a good structure to evolve controllers for Mario AI, BTs were
evolved using GE and their training and test performance were monitored over time,
along with other statistical measurements. These experiments also measured if the
separation of reactive and navigation routines led to improved results. Section 7.2
discusses in detail the different evolutionary approaches tested, aiming to deal with
the noisy fitness evaluation that highly dynamic environments such as games can
present.
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<BT> ::= ’<?xml version="2.0" encoding="utf-8"?>\n’ <XMLPart>
<XMLPart> ::= ’<Behavior>\n’ <RootNode> ’</Behavior>\n’

<RootNode> ::= ’<Node Type="Root">\n’<RootSelNode>’</Node>\n’
<RootSelNode> ::= ’<Node Type="Selector">\n’ <SeqsAndDefBB> ’</Node>\n’
<SeqsAndDefBB> ::= <SeqNodes> <GEXOMarker> <DefBB> ’\n’

<SeqNodes> ::= <SequenceNode> | <SeqNodes> <SequenceNode>
<SequenceNode> ::= <GEXOMarker> ’<Node Type="Sequence">\n’

<1to2Conditions> <FilterSeqActNLUTs> ’</Node>\n’

<1to2Conditions> ::= <ConditionNode> | <ConditionNode> <ConditionNode>
| <ConditionedLUT>

<ConditionNode> ::= ’<Node Type="Condition" />\n’

<FilterSeqActNLUTs> ::= <FilterHeader> <SeqActNLUTs> ’</Node>\n’
| <SeqActNLUTs>

<FilterHeader> ::= <Loop> | <NON> | <UFL>
<Loop> ::= ’<Node Filter_Type="Loop" Times="’<I>’" Type="Filter">\n’
<NON> ::= ’<Node Filter_Type="NON" Type="Filter">\n’
<UFL> ::= ’<Node Filter_Type="Until_Fail_Lim" Times="’<I>’" Type="Filter">\n’
<I> ::= 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<SeqActNLUTs> ::= ’<Node Type="Sequence">\n’ <1PlusActOrLUTs> ’</Node>\n’
<1PlusActOrLUTs> ::= <ActionOrLUT> | <1PlusActOrLUTs> <ActionOrLUT>
<ActionOrLUT> ::= <ActionNode> | <LUTNode>

<DefBB> ::= ’<Node Type="Sequence">\n’ <DefaultGoRight> ’</Node>\n’
<DefaultGoRight> ::= ’<Node Name = "DefGoRight" Type="Selector">
<Node Name = "DefPathPlanner" Type="Sequence">

<Node Name="Recalculate" Type="Selector">
<Node Filter_Type="NON" Type="Filter">
<Node Operation="IsFollowingPath" Type="Condition"/>

</Node>
<Node Operation="IsRightMostCloseToEnd" Type="Condition"/>

</Node>
<Node Name="PathPlanner" Type="Selector">

<Node Operation="GetPathToRightMost" Type="Action"/>
<Node Operation="NoPathAction" Type="Action"/>
<Node Name="JumpRightRunLong" Type="Sequence">
<Node Operation="NOP" Type="Action"/>
<Node Filter_Type="Loop" Times="25" Type="Filter">

<Node Operation="JumpRightRun" Type="Action"/>
</Node>

</Node>
</Node>

</Node>
<Node Name="Path Follower" Type="Sequence">

<Node Operation="IsFollowingPath" Type="Condition"/>
<Node Operation="FollowCurrentPath" Type="Action"/>

</Node>
</Node>’

Fig. 7 Extract of the grammar used, showing the incorporation of the XML syntax

7.1 Evaluating Behaviour Trees

A set of game levels is generated to test each evolved controller. Each mapset is
composed of 10 levels (5 difficulty settings, with and without enemies), and is
generated with a single random seed. The resulting fitness value (to be maximised)
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is a weighted sum of distance traveled and the actual Mario AI Benchmark score
(which includes enemy kills and collected items). Both game levels and BT
controllers are deterministic: the same controller in a map always yields the same
fitness.

7.2 Generality of Controllers

The Mario AI benchmark is able to randomly create multiple levels, ranging from
very easy to physically impossible to terminate. Such a dynamic environment
poses a generalisation problem, and the following approaches were tested aiming
at tackling this issue (note that both non-A* and A* versions of these were used):

• Single: this approach always uses the same mapset for evaluation, with the same
seed for all independent runs.

• Five: in this case, the same five mapsets are used to test each controller (kept
for all runs). This increases the variety of situations each controller is evaluated
on.

• Change1: this approach uses only one mapset for evaluation, but changing it
at each generation. The same sequence of mapsets is used in all runs. This
approach increases the variety of situations seen for each controller, while
keeping the evaluation effort small. To ensure continuity between generations,
the parent population is reevaluated with the new generation’s mapset.

• Change5: this case uses five mapsets for each evaluation, but all five are
replaced at each generation (same sequence for all runs). The parent population
is reevaluated with the new mapsets at the start of each new generation.

• Slide: this approach also uses five mapsets for each evaluation, replacing one
mapset with a new one at every generation, in a sliding window manner
(12345, 23456, etc.). The same sequence is kept for all runs. The parent
population is reevaluated with the new five mapsets at the start of each new
generation.

Each of the 10 systems evaluated (five approaches described in Sect. 7.2, with
and without A*) used the setup shown in Table 1.

As different approaches use a different number of mapsets for evaluation, and a
single mapset took anywhere between 0.7 s and 6.0 s to evaluate (using a single core
of a 2.8 GHz Intel Core i7 processor), different numbers of generations were used
so that each approach used the same number of mapsets per run.
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Table 1 Experimental setup

GE Population size 500

Evaluations 250,000

Derivation-tree depth range (for initialisation) 20. . . 30

Derivation-tree max depth unset

Tail ratio (for initialisation) 50%

Selection tournament size 1%

Elitism (for generational replacement) 10%

Marked 2-point crossover ratio 50%

Marked swap crossover ratio 50%

Average mutation events per individual 1

Mario Level difficulties 0. . . 4

Level types 0 1

Level length 320

Fig. 8 Mean best training score across time, for all approaches not using (left) or using (right) A*.
Note the difference in the scales on the Y axis

8 Results

8.1 Performance on Training

The mean best controller training score for all approaches is shown in Fig. 8. These
plots also include the average performance of the respective reference behaviour
(RunRightSafe without A*; DefaultGoRight for A*).2

The results confidently show that all approaches substantially outperform their
respective reference behaviours. It seems evident that the BT approach can success-
fully add reactive elements to the controllers, enhancing its performance. A second
observation that can be made is that there is a performance difference between
the controllers that use A* navigation and those that do not. The RunRightSafe

2This and all results reported in this chapter are averaged over 30 independent runs. Videos of the
best controllers of some runs are available online (http://tinyurl.com/gebtMarioAI).

http://tinyurl.com/gebtMarioAI
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controller has an average performance close to 22,000 points, while DefaultGoRight
averages above 31,000. With the exception of the Single approach, this is at a
par (or superior) to the average controller performance for the other approaches
not using A*. This showcases the performance improvement of using a dedicated,
deterministic algorithm for navigation.

The relative performance of each of the approaches is similar with or without
A*. It is worthwhile highlighting that the Single approach has the best training
performance. It is therefore quite successful at optimising the controller behaviour
for the single mapset it is trained on, independently from the initial random seed.
It shows the best evolvability, with a typical optimisation performance curve,
achieving the best training score with or without A*. A similar result can be
observed with the Five approach, providing a steady improvement in average
performance across the five training mapsets. The final lower total score is due to a
more diverse performance across the different mapsets.

Changing the mapset used for evaluation at each generation makes Change1
approach the noisiest in terms of evolution across time. This noisy result shows
the difficulty range of the levels generated in this framework with different random
seeds, even when using the same difficulty setting. With or without A*, this
approach has both the highest and lowest average score of all approaches, and
with A*, sometimes performs worse than the default behaviour. Change5 and Slide
exhibit a similar performance. The evolution curves show the extreme range of
difficulties due to the generated maps, but to a lesser extent than Change1, especially
in the case of Slide, thanks to using several mapsets and modifying them between
generations.

Table 2 shows the results of performing a linear regression to analyse the average
learning rate of the different approaches. Although they are not linear, a simple
linear model allows to make some observations: the intercept roughly represents
the starting performance of each controller, the slope is an approximation of the
learning rate of each approach, and the standard and residual errors are a measure
of the noise present in the average learning performance.

As can be seen, the Single approach exhibits the best average learning rate
across all runs. Five also shows a good learning rate, while Slide and Change5
exhibit similar learning rates, but lower and with a higher noise. Finally, Change1
has the lowest learning rate, which is actually negative when used in conjunction
with A* navigation, and the highest residual error (an indication of the range of
different maps explored and how hard it is to evolve controllers in such a dynamic
environment).

8.2 Performance on Test

A generalisation test was carried out in order to measure the performance of the
evolved controllers in unseen scenarios. This test consisted of 20 unseen maps
(seeds 666 to 685), with the same parameters as the training mapsets. The individual
that obtained the highest training fitness was tested every 5000 evaluations and the
average results across all runs are shown in Fig. 9.
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Table 2 Least-squares analysis of learning rates (bold face indicate approaches with the best
training/test performance)

Train Test

Approach Intercept Slope Std. E. Res. E. Intercept Slope Std. E. Res. E

No A*

Single 3.49E+4 1.40E−2 4.84E−4 784.5 2.12E+4 2.26E−3 2.50E−4 127.7

Five 2.87E+4 1.36E−2 1.00E−3 739.3 2.24E+4 3.22E−3 6.29E−4 321

Change1 3.24E+4 8.64E−3 3.43E−3 3946 2.25E+4 1.18E−2 1.25E−3 639.1

Slide 2.75E+4 1.12E−2 2.03E−3 1383 2.29E+4 1.15E−2 1.34E−3 684.2

Change5 2.70E+4 1.25E−2 3.35E−3 1763 2.27E+4 1.17E−2 1.30E−3 667.1

RunRightSafe 2.18E+4 0.0 0.0 0.0 2.18E+4 0.0 0.0 0.0

A*

Single 5.03E+4 1.69E−2 7.63E−4 1236 3.50E+4 −3.69E−3 4.53E−4 231.4

Five 4.28E+4 1.41E−2 9.29E−4 680.9 3.63E+4 4.45E−4 3.38E−4 172.6

Change1 4.55E+4 −5.81E−3 4.47E−3 5133 3.69E+4 1.04E−3 9.59E−4 489.6

Slide 4.16E+4 2.94E−3 2.16E−3 1467 4.06E+4 1.61E−2 1.76E−3 902.7

Change5 4.06E+4 4.34E−3 4.50E−3 2369 3.80E+4 8.16E−3 7.74E−4 395.2

DefaultGoRight 3.11E+4 0.0 0.0 0.0 3.11E+4 0.0 0.0 0.0

Fig. 9 Mean best test score of the best training individual every 5000 evaluations, for all
approaches not using (left) or using (right) A*

The first result to notice in these tests is that the performance of all approaches
decreases with respects to that of training. Given that these levels are unseen and not
used for computing the fitness during training, this is to be expected. A* approaches
fall from a 35,000–55,000 training performance range to 34,000–44,000 in test,
while no A* behaviours drop from 25,000–40,000 to 21,000–27,000.

As can be observed, the Single approach clearly overfitted its single training
mapset, and has the lowest generalisation score overall. It is interesting to see
that, with no A*, it is even worse than the reference RunRightSafe behaviour,
while with A* its average generalisation score worsens as evolution progresses.
Despite of a few signs of training overfitting, the Five approach slightly improves
its generalisation score over time without A*. With A* it quickly reaches its
best performance without further improvement overtime. Its performance is again
substantially better with A* (over 36,000 points) than without (around 23,000
points).
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Table 3 Average test performance and std. deviation

Approach Avg. score Std. dev. Approach Avg. score Std. dev.

No A* A*

Single 21668.1 1531.9 Single 34224.1 1016.8

Five 23033.3 2210.9 Five 36350.1 468.6

Change1 24910.4 1860.2 Change1 37435.2 596.2

Slide 26629.3 1631.7 Slide 42616.7 731.7

Change5 25374.7 1609.9 Change5 39282.5 579.9

RunRightSafe 21790.2 0.0 DefaultGoRight 31173.8 0.0

Change1 and Change5 steadily improve their generalisation performance, when
used without A*. In spite of the very noisy average training performance, the large
number of generations it is allowed to evolve can be a reason for this improvement.
In the case if A*, both approaches show a better performance than their no A*
counterparts, with Change5 showing a better improvement than Change1. However,
the approach that shows the best performance in the generalisation test is Slide, with
a substantially better average score at all evaluation steps.

Table 3 shows the test performance of the best training controllers (again
averaged across 30 runs). All A* approaches present significantly better test
performance than their respective no A* behaviours, with mostly non-overlapping
standard deviation intervals.

The right half of Table 2 presents the test score improvement rates of all
approaches; these are very low for Single and Five. Single has a negative learning
rate, when used with A* navigation. Slide and Change5 show good test performance
improvement over time, Slide with A* exhibiting the highest learning rate across
all sets (in training and testing) and approaches (A* or not). Finally, it is worth
highlighting that the learning rate of Change1 (with A*), albeit very low, is positive,
in contrast to its negative training learning rate.

8.3 Analysis

8.3.1 Fitness Analysis

Figure 10 provides an analysis of the specific fitness contributors (number of cells
passed, number of kills and time left when Mario dies or finishes a level) of the best
evolved controllers, averaged across the 20 test mapsets.

This analysis reinforces the idea that A* navigation makes an evident contri-
bution to the survivability of Mario. The average number of cells passed with the
DefaultGoRight controller is much higher, leading to a higher number of (random)
kills. The time left with A* is also superior, due mainly to it not getting stuck in
areas that are difficult to navigate.
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Fig. 10 Breakdown of average test performance of best evolved controllers, without A* (left) and
with A* (right). The first row plots average percentage of passed cells; the second the average
number of kills; and the last the percentage of time left

Controllers evolved with no A* show a worse test performance in terms of total
cells passed than their reference behaviour (RunRightSafe). This is because BT
structures need to be evolved to effectively combine navigation and reactiveness
actions (such as killing enemies). Single and Five, despite of being poor at
generalisation, are able to improve their average number of kills. They fail, however,
at significantly evolving controllers that improve the number of cells passed or the
total time left.

In the A* case, the BT structures are evolved mainly for reactiveness, with
all approaches producing good reactiveness behaviour blocks. This allows them
to improve the good navigation base given by the DefaultGoRight increasing the
number of cells passed, as well as the number of kills (with a much higher
improvement than controllers without A*).
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This analysis provides another indication that the Single approach does not
generalise well. It exhibits little or no improvement (apart from number of kills,
when used without A*). Five performs slightly better, and all the other approaches
evolve better generalisable behaviours across time.

It is also of interest the (non-)evolution of how much time was left after the game
was completed when using A*. Even though better navigation means maps will be
finished in less time, complex reactive behaviours and overall better survivability
increase the amount of time spent in each map. Fitness-contributing behaviours,
such as collection of items, were shown hard to evolve. Controllers with A*
collected, on average, between 1 and 2 items, while no A* controllers achieved
less than 1.

8.3.2 Structure and Size of the Solutions

Figure 11 (top) shows the average (genotypic) solution size, and it provides further
evidence that the Single and Five approaches overfit their target maps. The size of
the genotype steadily increases through evolution, which is more pronounced when
A* is not used (hence solution size seems more stable with a pathfinding algorithm
in the behaviour).

Although the genotype size (and hence number of nodes in the BT controllers)
is comparable with or without A*, the actual structure of these trees is radically

Fig. 11 Top row: Genotype solution size without (left) and with (right) A*, for the best
individuals. Bottom row: Mean number of BBs for the best individuals, without (left) and with
(right) A*
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different with the two navigation approaches. Figure 11 (bottom) plots the number
of Behaviour Blocks (BBs) in the best controllers as seen across time. As can be
seen, this number is very stable, indicating that evolution is mainly focused on
optimising the contents of each BB keeping a similar number in the BT.

Having a small number of BBs without A* corresponds with a very complex
structure on each one of them. It is worth highlighting that this very small number
limits the effectiveness of the crossover operator: each BB incorporates a complex
mix of both navigation and reactiveness actions, which is difficulty to combine and
inter-exchange properly. When using A* as a default behaviour for navigation, each
BB is mostly a compact set of conditions and actions evolved for reactiveness,
resulting in a larger number of BBs being evolved by each controller. These BBs
are more easily exchanged through crossover as independent reactive sequences.

9 Conclusions and Future Work

This chapter analysed the application of GE to evolve Behaviour Trees, a structure
that is able to incorporate reactive (short term) and planning (long term) concerns in
highly dynamic environments. In particular, this chapter showed the application of
this technique to evolve controllers for the Mario AI video-game.

The experiments showed that GE is suitable for this task, allowing the incor-
poration of domain knowledge and specific syntax restrictions into the generated
solutions, through careful grammar design. Also, the specification of crossover
points allowed for the definition and exchange of Behaviour Blocks, accelerating
the evolutionary process. The resulting solutions are human readable, and easy to
analyse and fine-tune. Not only this shows the applicability of this technique to
produce usable and maintainable behaviours, but it also addresses one of the main
concerns of the games industry regarding speed, applicability and understandability
of solutions proposed by evolutionary approaches.

Possible extensions to this work include adopting a multi-objective approach,
dividing the objective fitness score into some of its constituents (such as distance
traveled or number of kills). Specifically related to the use of BTs, one could also
record statistics such as the frequency of use, the number of kills and the complexity
of each BB, and use this information to prune or inform the crossover operators.
Some mechanisms would have to be in place to avoid early convergence to a very
reduced set of BBs, but this could also be achieved through individual BB analysis.
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Appendix: Actions, Conditions, Filters and Sub-trees for
Mario

This section contains tables with the actions, conditions, filters and sub-trees used
by the approaches described in this chapter to evolve Behaviour Trees. Note that
some actions and conditions can be analogous in both the controllers with and
without A* (i.e. IsBreakableUp vs. UnderBrick); they are, however, different: while
the A* version checks the nodes in the graph, the no-A* implementation needs to
analyse the contents of each cell. Also, note that actions use the terms left and right,
which imply movement, while conditions use ahead (for right) and back (for left).
Entries marked with a † denote sub-trees that have an analogous left (or back) variant
(Tables 4 and 5).

Table 4 Filters available to the GE to evolve a BT

Filters

Name ¬A* A* Description

Loop � � Repeats the execution of its child sub-tree N times

Non � � Negates the result given by its sub-tree

UntilFails � � Repeats the execution of its sub-tree until it receives a failure

UntilFailsLimited � � Repeats the execution of its sub-tree N times or until failure

Table 5 Conditions, actions and sub-trees available to the GE to evolve a BT

Name ¬A* A* Description

Conditions

CanIFire � � Checks if Mario is able to shoot fireballs

CanIJump � � Indicates if Mario is able to jump (if he is on the ground)

IsFollowingPath � � Indicates if Mario is following a path given by A*

IsStuck � � Checks if Mario has been idle for many cycles

UnderBrick/ � � Verifies if there is a brick/question block over Mario

Question

EnemyAhead † � � Checks if there is an enemy ahead of Mario

EnemyAhead � � Queries for an enemy ahead and over/below Mario

Up/Down †
JumpableEnemy � � Checks ahead for an enemy that can be stomped

Ahead †
NoJumpable � � Checks ahead for an enemy that cannot be stomped

EnemyAhead †
IsBulletToHead/ � � Checks for a bullet coming towards Mario’s head/feet

Feet

AvailableJump � Verifies if there are no obstacles over and ahead of Mario

Ahead †
HoleAhead † � Indicates if there is a hole ahead of Mario

(continued)
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Table 5 (continued)

Name ¬A* A* Description

Conditions

IsGapAhead † � Indicates if there is a free gap in front of Mario

IsBreakableUp/ � Checks for a breakable block above/ahead of Mario

Ahead

IsClimbableUp/ � Checks for a climbable platform over/ahead of Mario

Ahead

IsJumpPlatform � Verifies if there is a platform ahead and over Mario

UpAhead †
IsPushable � Checks for a question mark block over/ahead of Mario

Up/Ahead

Obstacle � Verifies if there is an obstacle ahead of Mario

Ahead †
ObstacleHead † � Indicates if there is an obstacle ahead, at Mario’s head

Actions

NOP, Down,
Fire

� � No action and atomic actions for Down and Fire, resp.

WalkRight † � � Atomic action Right

RunRight † � � Combination of the atomic actions Right and Fire

GetPathTo � Uses A* to get a path to the closest brick block to Mario

ClosestBrick

GetPathTo � Uses A* to get a path to the closest question mark block

ClosestQuestion

GetPathTo � Uses A* to get a path to the closest item to Mario

ClosestItem

GetPathTo � Gets a path (with A*) to lowest position seen in the level

Ground

GetPathTo � Gets a path to highest position seen in the level

Top

GetPathTo � Gets a path to rightmost position seen in the level

Closest

RightMost

GetPathTo � Gets a path to leftmost position seen in the level

ClosestLeft

Most

Sub-trees

UseRight � Moves Mario to the right until no blocks are over him to

Gap † then jump to a higher platform and continue from there

AvoidRight � Attempts to overcome a dead end. Takes Mario back to the

Trap † previous bifurcation point to then use UseLeftGap

GoUnder � Passes structures traversable only if Mario is small;

Right † or he runs, crouches and slides under it

(continued)
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Table 5 (continued)

Name ¬A* A* Description

Conditions

DefaultPath � Gets the path to the rightmost position on the screen

Planner

Path � Follows the last path calculated

Follower

JumpRight � � Shown in Fig. 4. Makes a long jump to the right.

Long † The filter executes the JumpRight action 9 frames

JumpRight � � As above, with JumpRightRun (jump, right, run)

RunLong †
JumpRight � � As JumpRightLong, with JumpRight executed 3 frames

Short †
JumpRight � � As the one above, with JumpRightRun

RunShort †
WalkRight � � Moves Mario to the right, checking for hazards, trying to jump

Safe † (or kill, if enemy can be stomped) over them

RunRight � � As WalkRightSafe, but the input run is always on

Safe †
Vertical � � As JumpRightLong, but the action is Jump (input jump)

JumpLong

Vertical � � As JumpRightShort, but the action is Jump

JumpShort
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Business Analytics and Grammatical
Evolution for the Prediction of Patient
Recruitment in Multicentre Clinical
Trials

Gilyana Borlikova, Louis Smith, Michael Phillips, and Michael O’Neill

Abstract For a drug to be approved for human use, its safety and efficacy need
to be evidenced through clinical trials. Optimisation of patient recruitment is an
active area of business interest for pharma and contract research organisations
(CRO) conducting clinical trials. The healthcare industry and CROs are gradually
starting to adapt business analytics techniques to improve processes and help
boost performance. Development of methods able to predict at the outset which
prospective investigators/sites will succeed in patient recruitment can provide
powerful tools for this business problem. In this chapter we describe the application
of Grammatical Evolution to the prediction of patient recruitment in multicentre
clinical trials.

1 Introduction

Clinical trials are an essential step in the approval process of any new drug and
patient recruitment is the most time and resource consuming part of the majority of
clinical trials [31]. Patient recruitment is critical to clinical trials as, if a required
number of patients is not recruited, a trial cannot be completed [31]. Therefore,
optimisation of patient recruitment is a critical point of interest for pharma and
CROs. This business problem can be tackled from several different directions,
including attempts to predict recruitment timelines and design relevant interven-
tions [2, 3]; identification of eligible patients though trawling of Electronic Health
Records (EHR) [18, 31] or better strategies of patient engagement [22, 24, 31].
However, neither approach by itself provides a universal fix to the challenging
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problem of sourcing the required number of patients for a trial reliably. One way
to facilitate successful patient recruitment is to ensure strategies for selection of
investigators/clinical sites (sites) at the start of a trial that will achieve higher patient
enrolment numbers. This study builds and extends upon previous work [7, 8] that
used Grammatical Evolution (GE) [13, 26], a grammar-based Genetic Programming
(GP) system [23] to evolve binary classification models, in order to predict the
future patient enrolment performance of sites considered for a trial. To ensure
business-applicability of any evolved classifiers, it is important to carefully consider
performance of the classifiers on each of the two classes constituting the problem.
The first part of the study presented here investigates the use of a range of
classification performance metrics that take into account the contribution of each
of the classes. The results show that classification metrics with a range of different
degrees of each class contribution produce models that cover different parts of the
problem space. However, it would be beneficial to be able to specifically develop
models targeting particular sectors of the problem space. The second part of the
study addresses this challenge by introducing a new fitness function that attempts
to evolve classifiers that maximise performance on one class, while adhering to a
particular threshold on the second class. Overall, the results demonstrate the ability
of GE to evolve highly competitive customised patient recruitment classification
models and show that a collection of such models can be used to address challenges
of the real-world patient recruitment business scenarios.

2 Background

2.1 Patient Recruitment in Clinical Trials

Patient recruitment is critical for the successful completion of clinical trials [22,
24, 31]. Studies indicate that though majority of clinical trials eventually enroll the
required number of patients, up to the nearly 50% of sites in a given trial fail to
enroll planned number of patients and the timelines are usually pushed to nearly
twice the original plan [34]. This results in the need to bring more sites into the study
and to extend overall enrolment timelines, leading to financial waste, compromised
timelines and an increase in the overall risk to the studies [24, 31].

Several components contribute to the success or failure of patient enrollment,
such as the recruitment potential of the site, complexity and duration of the trial
protocol, different strategies of patient engagement and other factors [22, 24, 31].
A lot of attention has been given recently to better ways of reaching target patient
populations and maintaining patient engagement [31, 33]. There is also a growing
effort to reduce trial protocol complexity [31]. However, notwithstanding recent
progress, the process of improving patient recruitment remains an area of active
business interest.
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2.2 Different Approaches to Patient Enrolment Prediction

Most published research into patient recruitment is based on modelling enrol-
ment rates and forecasting timelines to achieving certain number of enrolled
patients [2, 3]. Another widely adapted approach is identifying patients and enrol-
ment eligibility from analysis of the existing patient databases and electronic health
records [1, 18, 31].

An alternative way to address this problem is to improve the quality of clinical
sites selected to participate in a trial. This can be achieved by the development of
predictive classification models based on the historical patient recruitment data. A
recent study by Ni and colleagues [24] adapted a similar approach (classification
based on historical data) to predict patients response to clinical trial invitations
in the context of paediatric emergency department. They report that compared
to the random response predictor that simulated current practice, the machine
learning (ML) algorithms trained on historical data achieved significantly better
performance.

2.3 Grammatical Evolution for Classification

GE [13, 26] was previously successfully applied to a range of classification problems
in finance and evolved classifiers that were competitive with the results produced by
other ML algorithms [9, 10, 35]. It was suggested that GE methodology has general
utility for rule-induction applications. Especially attractive features of GE are the
possibility of incorporating domain knowledge into the formulation of the problem
at the grammar development stage [25], and an ease of incorporating different fitness
functions to drive evolutionary process of model development. This study builds
on our previous work [7, 8] that extended GE methodology into the domain of
prediction of patient recruitment in multicenter clinical trials.

2.4 Scope of Research

In this application of GE to Business Analytics, we use the advantages of GE to
evolve classification models for prediction of patient recruitment in multicentre
clinical trials.

Performance of classification models can be fully characterized by a table called
confusion matrix (CM) [29]. In the case of a two-class classification problem CM of
a classifier has four cells (Table 1); cells on the main diagonal contain the number of
correct predictions for each of the classes (True Positives, TP and True Negatives,
TN); the cells on the contra-diagonal contain counts of errors made by the classifier
(False Positives, FP and False Negatives, FN).
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Table 1 Confusion matrix

Actual condition

Condition positive Condition negative

Predicted condition
Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)

In our initial study we used GE to evolve classification models to predict
the future patient enrolment performance of sites considered for a trial and have
shown that prediction accuracy of the GE-evolved models is comparable or even
better than the accuracy achieved by a range of ML algorithms widely used for
classification [7]. However, the standard accuracy that was used as a fitness function
in the study is a non-balanced score [30, 32] that does not account for an individual
class’s contribution to the metric. At the same time, model construction for this
business problem necessitates careful consideration of the two classes as in most
real-life patient recruitment situations, historic data is unbalanced (the proportion of
poorly performing vs. successful sites is uneven) and misclassification costs differ
between the classes. In the context of patient recruitment prediction we want to
develop classifiers that distinguish between sites that will go on to show poor patient
enrolment (class of interest or condition positive in terms of CM, Table 1) from sites
that will perform (condition negative). In this situation one type of error, mistakenly
predicting condition negative (FN in CM), will result in inclusion of a potentially
weak site in the study, while another, mistakenly predicting condition positive (FP
in CM), will lead to elimination of a potentially promising site from the study. The
size of the penalty for each type of mistake will depend on the immediate business
context/environment of a particular clinical trial.

In the first part of the study we address this aspect of the business problem by
exploring the use of several balanced scores/metrics that account for the contribution
of each class and provide an alternative to the standard accuracy in classification [30,
32]. We investigate the use of balanced accuracy, Yoden’s J-statistic and F-score as
the fitness functions to drive model development with GE and compare the results
with that of the standard accuracy [17, 27, 32].

The second part of the study attempts to simultaneously address two aspects
of the business challenge of site selection for patient recruitment, dependency of
the misclassification costs on the business context at the model deployment stage
(for example, the scarcity or abundance of sites available for inclusion into the
study), and the fact that these costs are usually not known at the model development
stage. For such situations Fawcett and Provost [29] advocate the use of Receiver
Operating Characteristic (ROC) curve for model evaluation and selection, and the
use of expected cost/benefit to frame evaluation of the probabilistic ML classifiers.
If the costs were known in advance, the problem could be framed in a cost-sensitive
learning framework [15]. In the GP field Zhang and colleagues developed different
fitness functions [5] and diverse ensembles [6] to improve classification in the case
of unbalanced data. Fawcett and Provost [28] introduced the idea of developing
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a robust hybrid classifier to address challenges of imprecise class distribution and
misclassification costs. Recently several authors [4, 12, 21] extended this idea by
developing multi-objective ROC Front (ROCF) methods. We set out to address this
challenge by proposing a new fitness function that incorporates a misclassification
threshold and utilising this function to develop a collection of models capable
of addressing varying business scenarios. These models are compared with the
standard ML algorithms and possible approaches to the selection of the best
generalisable model are discussed.

3 Case Study: GE with Class-Balanced Fitness Functions

In this study, we address the problem of unbalanced classes and different misclassi-
fication costs by exploring a range of alternative fitness functions to drive GE. We
formulate the business problem as a binary classification problem, construct a gram-
mar adapted to the problem and then run GE with the standard accuracy as the fitness
function to establish a baseline. We then investigate a range of well-established
balanced-score classification metrics: balanced accuracy with equal weights, J-
statistic and (F-measure) with three different values of beta [17, 27, 30, 32]. The
GE models developed with these functions are compared with models developed
using standard accuracy and performance of the benchmark ML algorithms.

3.1 Experimental Design

3.1.1 Model Data

The dataset used in the current study was constructed based on the de-identified
historical operational data provided by ICON plc. on 21 Diabetes Mellitus Type
II Phase III clinical trials and was described previously in [7]. The operational
data provided by the company was supplemented by data from the outside sources.
During data preparation, records with missing values were removed, as well as a
few predictor variables with near-zero variance. The resultant dataset consisted of
1233 records containing 43 site related predictor variables. The dataset contained
35 numerical variables and 8 categorical variables describing different characteristic
of prospective site and related clinical trial. The sites were allocated to two classes
based on their patient enrolment performance. Prior to the beginning of experiments,
the data was split into balanced training and testing subsets (70/30%) using
createDataPartition function of the CARET package in R [19]. In all experiments
model training and (where necessary) tuning was performed using the training
subset and then performance of the best models was tested on the testing data subset
to assess the evolved models generalisability to unseen data.
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3.1.2 Evolutionary Model Representation and Run Parameters

In a similar way to our previous work [7, 8] we approached the business problem
of patient enrolment prediction as a classification problem. GE was used to evolve
decision-tree type discreet classifiers. Figure 1 shows the GE grammar used in the
experiments. Construction of the grammar incorporated domain knowledge shared
by business experts on clinical trials that informed grouping and different selection
probabilities of particular features. The grammar used the function and terminal
set detailed in Table 2. We confined the function set that operated on numerical
variables to arithmetic operations in order to cover only linear transformations of
the variables.

Table 3 details the evolutionary parameters setting. Sub-tree crossover was
employed to ensure the validity of the resulting individuals. All experiments were
run using a custom modification of the PonyGE2 system [16] with post-processing
of the results using R and Python.

3.1.3 Fitness Functions, Performance Measurement and Benchmarking

The following functions were investigated [17, 27, 30, 32]:

Accuracy = (T P + T N)

(T P + T N + FP + FN)
(1)

Balanced Accuracy = ω× T P

T P + FN
+ (1−ω)× T N

T N + FP
, where ω = 0.5

(2)

J−statistic = T P

T P + FN
+ T N

T N + FP
− 1 (3)

F−measure = (1+ β2)× T P

((1+ β2) ∗ T P + β2 × FN + FP)
, where β = 0.5, 1, 2

(4)

To facilitate comparison of performance of models developed with different
fitness functions, they were assessed in terms of True Positive Rate (TPR) and False
Positive Rate (FPR) derived from confusion matrix data of a model, similarly to the
ROC coordinates [11].
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_____________________________________________________________________________________
<s> ::= np.where(<pred>, <out>, <out>)

<out> ::= <s>|<class>
<class> ::= -1|1

<pred> ::= np.logical_and(<pred>,<pred>)|
np.logical_or(<pred>,<pred>)|
np.logical_not(<pred>)|
(<expr_num> <bool_num_comp> <expr_num>)|
(<expr_num> <bool_num_comp> <expr_num>)|
(<expr_num> <bool_num_comp> <expr_num>)|
<expr_bool>|<expr_bool>|<expr_bool>

<bool_num_comp> ::= <|>|<=|>=

<expr_num> ::= (<expr_num> <op_num> <expr_num>)|
(<var_num> <op_num> <var_num>)|
<var_num>

<op_num> ::= +|-|*

# thirty four numerical features arranged into three groups
<ft_num1> ::= x[0]|x[1]|x[2]|x[3]|x[4]|x[5]|x[6]|x[7]|x[8]|x[9]
<ft_num2> ::= x[10]|x[11]|x[12]|x[13]|x[14]|x[15]|x[16]|x[17]|x[18]|x[19]|x[20]
<ft_num3> ::= x[21]|x[22]|x[23]|x[24]|x[25]|x[26]|x[27]|x[28]|x[29]|x[30]|

x[31]|x[32]|x[33]|x[34]

# numerical constants
<const_num> ::= -1|-0.9|-0.8|-0.7|-0.6|-0.5|-0.4|-0.3|-0.2|-0.1|0.0|

0.1|0.2|0.3|0.4|0.5|0.6|0.7|0.8|0.9|1

<var_num> ::= <const_num>|<const_num>|
<ft_num1>|<ft_num1>|<ft_num1>|
<ft_num2>|
<ft_num3>

# five boolean features
<ft_bool> ::= x[38]|x[39]|x[40]|x[41]|x[42]

<expr_bool> ::= np.logical_and(<expr_bool>,<expr_bool>)|
np.logical_or(<expr_bool>,<expr_bool>)|
np.logical_not(<expr_bool>)|
<op_bool>|<op_bool>|
<ft_bool>|<ft_bool>|<ft_bool>|
<cat>|<cat>|<cat>

<op_bool> ::= np.logical_and(<ft_bool>,<ft_bool>)|
np.logical_or(<ft_bool>,<ft_bool>)|
np.logical_not(<ft_bool>)

# possible values of the three categorical features
<x35_1> ::= 1|2|3|4|5|6|7|8|9|10|11|12
<x35_2> ::= 13|14|15|16|17|18|19|20|21|22|23|24
<x35_3> ::= 25|26|27|28|29|30|31|32|33|34|35|36|37
<x36> ::= 1|2|3
<x37> ::= 1|2|3|4|5

<cat> ::= (x[35] <op_cat> <x35_1>)|
(x[35] <op_cat> <x35_2>)|
(x[35] <op_cat> <x35_3>)|
(x[36] <op_cat> <x36>)|
(x[37] <op_cat> <x37>)

<op_cat> ::= ==|!=

_____________________________________________________________________________________

Fig. 1 Grammar used to construct GE classifier
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Table 2 Function and terminal sets of GE classifier

Function set Terminal set

+, −, *, /, and, or, not 35 numerical predictive variables: x0, . . . , x34

=, �= 3 categorical predictive variables: x35, x36, x37

<, >, ≤, ≥ 5 Boolean predictive variables: x38, . . . , x42

20 random constants in −1.0, . . . , 1.0 with 0.1 step

Table 3 Evolutionary parameter settings

Parameter Value

Initialisation Ramped-half-and-half initialisation

Number of runs 30

Population size 1000

Number of generations 50

Selection Tournament

Tournament Size 5 (0.5% of population size)

Replacement Generational

Elite size 1

Crossover Sub-tree

Crossover Probability 0.9

Mutation Sub-tree

Mutation Probability 1 event per individual

Max derivation tree depth 9

T PR = T P

T P + FN
(5)

FPR = FP

T N + FP
(6)

Performance of the GE models was compared to the performance of three well-
established ML algorithms, Classification and Regression Tree (CART), Random
Forest (RF) and Support Vector Machine with Radial Basis Function Kernel
(SVM) [20]. The two of the selected ML algorithms (CART and RF) are based on
the decision trees and therefore provide a good comparison to the GE decision-tree
models, while SVM is a powerful algorithm that uses a different principle to achieve
classification. The R CARET package [19] was used to train, tune and test the ML
models. Accuracy was used as a metric in tuning (tenfold cross-validation repeated
10 times) and training procedures and all ML models results are reported for the
default class probability threshold of 0.5. Settings of the ML models are presented
in Table 4.
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Table 4 Benchmark machine learning (ML) model settings

Model R CARET method Parameter setting

Classification and Regression Tree
(CART)

rpart Complexity parmeter = 0.0249

Random Forest (RF) rf #randomly selected predictors = 7

Support Vector Machines, Radial
Basis Function Kernel (SVM)

svmRadial Sigma = 0.0149, cost = 0.5

3.2 Results and Analysis

Results of the evolutionary runs with different fitness functions are presented in
Fig. 2. The possible range of fitness values in each case depends on a particular
function. The best and average population fitness gradually increased over 50 GE
generations in all experiments confirming the ability of all fitness functions to suc-
cessfully drive evolutionary process (Fig. 2a, b). The median training performance
of the 30 best-of-run classifiers evolved with each fitness function was 0.72 for
accuracy, 0.69 for balanced accuracy, 0.39 for J-statistic, 0.60 for F0.5-score, 0.63
for F1-score and 0.77 for F2-score (Fig. 2c). When these classifiers were applied to
the previously unseen test subset, their performances degraded slightly comparing
with the training performance. The median fitness levels achieved on the test were
0.66, 0.64, 0.30, 0.52, 0.60, 0.75 respectively (Fig. 2d).

To facilitate between-function comparison of models’ performance, all models
were then assessed in terms of TPR/FPR coordinates. Dot-plots of performance on
test data of 30 individual best-of-run models developed with each function (Fig. 3)
show that models evolved using different fitness functions group in different parts
of the TPR/FPR space.

To investigate the relationship between a model’s performance on training data
with performance on testing data, we next created dot-plots of results of the best-
of-run models evolved with each function in two coordinate systems—Fitness
on train/TPR on test (Fig. 4) and TPR on train/TPR on test (Fig. 5). The visual
examination of the dot-plots suggests that while there appears to be no defined
relationship between a model’s fitness on training and TPR on test (Fig. 4), there
is a positive linear relationship trend between the TPR that a model showed on train
and its TPR on test (Fig. 5).

Table 5 contains the highest TPR and corresponding FPR values achieved on
the test subset by GE models evolved with different fitness functions and TPR/FPR
values achieved by the three ML models with the 0.5 class threshold. The same data
is visualised in Fig. 6. The figure and the table show a trade-off between increase
in TPR and corresponding increase on FPR. In the extreme case the best classifier
evolved using F2-measure correctly predicts 99% of class of interest sites (TPR
0.99) at the price of misclassifying almost 80% of the opposite class (FPR 0.79).

Between the GE-evolved models, classifiers evolved using standard accuracy
achieved the highest TPR of 0.57 with the corresponding FPR of 0.27, using F0.5
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Fig. 2 GE with different fitness functions classification experiments. Best (a) and average (b)
training fitness achieved by GE models driven by different fitness functions in 30 independent runs
over 50 generations. (c) Fitness of the 30 best-of-run evolutionary classifiers on the training (c) and
test (d) data. Note that the range of fitness values depends on the function

0.61/0.30, using J-statistic 0.73/0.38, using balanced accuracy 0.77/0.45, using F1
0.84/0.52 and using F2 0.99/0.79 (TPR/FPR respectively). For comparison, all three
ML models with the default 0.5 class threshold showed lower TPR levels (Table 5).
The results clearly demonstrate that GE evolves models that are comparable or even
better than ML models, depending on the context.
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Fig. 3 Performance of the best-of-run GE models evolved with different fitness functions on test
data (30 runs for each function)
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Fig. 4 Relationship between fitness on train and TPR on test of the best-of-run GE models evolved
with different fitness functions
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Fig. 5 Relationship between train and test TPR performance of the best-of-run GE models evolved
with different fitness functions
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Table 5 Best test
performance achieved by GE
models developed with
different fitness functions and
test performance of ML
models with the 0.5 class
threshold

Model TPR FPR

Accuracy 0.57 0.27

Balanced accuracy 0.77 0.45

J-statistic 0.73 0.38

F-metric (0.5) 0.61 0.30

F-metric (1) 0.84 0.52

F-metric (2) 0.99 0.79

CART 0.49 0.21

RF 0.56 0.25

SVM 0.39 0.17

Fig. 6 Best test performance
achieved by GE models
developed with different
fitness functions and test
performance of ML models
with the 0.5 class threshold
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3.3 Conclusions

The positioning of the models developed with the studied functions in the TPR/FPR
space is a reflection of the functions’ compositions. The standard accuracy reflects a
combined number of correct predictions across two classes and as a result develops
classifiers that are biased towards the majority class i.e. are stricter on majority
class misclassifications. The balanced accuracy takes separate account of correct
predictions for each class and in the case of the ω coefficient = 0.5 gives both
classes contribution equal weight in the final score, thus giving the minority class
more weight in shaping the classifier. In a similar way, J-statistic combines correct
predictions for each class, but this time without an explicit weighting coefficient. F-
measure is a combination of precision (proportion of TP out of predicted condition
positive) and recall (proportion of TP out of condition positive, TPR). F1-measure
(balanced F-score) gives equal weight to precision and recall, F0.5-measure weighs
precision more than recall (by attenuating the influence of FNs), while F2-measure
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puts more weight on recall (by placing more emphasis on FNs) [27]. As the result,
models developed with F0.5-measure fitness function are closer to the ones evolved
using standard accuracy, while models developed with F2-measure are extremely
liberal (heavily biased towards the class of interest).

Overall, the study demonstrates how the flexibility of GE allows for an easy
utilisation of different fitness functions to drive model development. The fitness
functions examined in this study help to develop models distributed along the
strict/liberal model axis, thus enabling development of a collection of models that
are better suited to different business scenarios.

4 Case Study: GE with a Threshold Fitness Function

Development of models for prediction of patient recruitment is further complicated
by the fact that the target misclassification costs are usually not known at the model
development stage and are business-context dependent. In this part of the study we
address this challenge by proposing a new fitness function to develop a multi-model
system of decision-tree type classifiers that optimise a range of possible trade-offs
between the correct classification and errors. We apply this new fitness function to
drive GE evolution and consider induced models in more detail.

4.1 Experimental Design

All experiments were conducted using the dataset described in Sect. 3.1. The data
was split into train (70%) and test (30%) subsets while maintaining class balance
and GE models were evolved on the train subset. The GE grammar, function
and terminal sets and evolutionary parameters were the same as described earlier
(Tables 1, 2 and 3, Sect. 3.1).

We introduced a new fitness function to facilitate evolving solutions that
maximise performance in terms of TPR given FPR cut-off value:

Fitness =
⎧
⎨

⎩

T PR if FPR ≤ cut-off

−FPR if FPR > cut-off
(7)

Using this function, the fitness of the solution is assigned value equal to its TPR
if solution’s FPR is below or equal to the set cut-off value, otherwise it is assigned
the value equal to −FPR. The choice of the FPR cut-off values for the study was
informed by the business needs. Depending on the business environment, the site
selection might benefit from either more conservative/strict models or more liberal
models that will be able to correctly identify more instances of the class of interest
even at a price of more misclassification errors on the other class. We have projected



476 G. Borlikova et al.

Table 6 Benchmark machine learning (ML) model settings

Model R CARET method Parameter setting

Classification and
Regression Tree (CART)

rpart Complexity parmeter = 0

Random Forest (RF) rf #randomly selected predictors = 13

Support Vector Machines,
Radial Basis Function
Kernel (SVM)

svmRadial Sigma = 0.0000129, cost = 512

that from a business perspective the tolerable levels of FPR should not exceed 0.5
(50% of the majority class misclassification). Based on this assumption, four FPR
cut-off values were investigated in this study: 0.2, 0.3, 0.4, 0.5.

An issue of model generalisation is critical for any applied model development.
We investigate different approaches for selection of the best models, and compare
visual selection of individual models based on plotting, selection based on a
validation subset and selection based on performance as assessed by bootstrap
resampling of the validation subset (50 repeated resamples with replacement).

To benchmark the best evolved GE classification models their performance was
compared to performance of the three well-established machine learning (ML)
algorithms widely used in classification problems CART, RF and SVM [20]. As
previously, the R CARET package [19] was used to train and tune ML models and
to test their performance on the data. Model parameters were tuned using tenfold
cross-validation repeated 10 times with the Area Under the Curve (AUC) as the
selection metric and the default 0.5 class threshold. Final models parameter settings
are presented in Table 6.

4.2 Results and Analysis

The best and average population fitness gradually increased over 50 GE generations
in experiments with all four FPR cut-offs confirming effectiveness of the proposed
fitness function in driving evolutionary process (Fig. 7). As expected, the application
of the fitness function with different FPR cut-offs resulted in different values
of fitness achieved by the respective GE populations. Best training fitness per
generation (Fig. 7a) provides an easily observed illustration of this point. In the
experiment with the most stringent FPR cut-off of 0.2 the best training fitness
achieved within the population gradually reaches 0.59 over 50 generations, while
in the experiment with the most liberal FPR cut-off of 0.5 the best fitness within
the population gradually reaches almost 0.85. The median training performance
of the 30 best classifiers evolved in each independent evolutionary run was 0.52
(0.2 cut-off), 0.64 (0.3 cut-off), 0.73 (0.4 cut-off) and 0.83 (0.5 cut-off) (Fig. 7c).
The average training fitness per generation and the fitness of the 30 best of run
classifiers figures (Fig. 7b, c) also provide an illustration of the fact that independent
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Fig. 7 GE with a threshold fitness function classification experiments. Best (a) and average (b)
training fitness achieved by GE models driven by fitness function with different FPR cut-off values
in 30 independent runs over 50 generations. (c) Fitness of the 30 best-of-run evolutionary classifiers
on the training (c) and test (d) data

GE runs evolve models with “tightness” of the fitness distribution increasing along
with the liberalisation of the imposed FPR cut-off. With the strict 0.2 FPR cut-off
30 independent runs result in models fairly dispersed in terms of the final fitness,
while the most liberal cut-off of 0.5 FPR allows for the development of models that
return nearly identical fitness.

Next, the performance of the 30 best-of-run GE-evolved classifiers was evaluated
on the test data. As expected, in comparison with the median performance on
the train subset, the median fitness levels achieved by these models on the test
subset were lower (0.49, 0.62, 0.67 and 0.78 respectively), reflecting the challenge
of generalisation (Fig. 7d). Dot-plots of the same data (Fig. 8) shows detailed
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Fig. 8 Performance of the best-of-run GE models evolved with different fitness functions on test
data (30 runs for each function)

distribution of the fitness values of the 30 models and confirms that the models
retain positioning in terms of the FPR axis well overall (within 0.05 of FPR cut-off
in most cases).

Examination of the performance of all 30 generated models on test data helps to
assess the method in general (in the current case, performance of the new proposed
fitness function utisiling different FPR cut-offs), but does not enable selection of the
best model. At the same time, the business problem would benefit from selecting a
particular, preferably the best, model from the 30 evolved so that it can be deployed
to classify prospective clinical trial sites in the future.

To examine the relationship between performance in training and generalisation
to the test subset we generated dot-plots for all models in coordinates TPR on
train/TPR on test (Fig. 9). Visual examination of the plots suggested that in this case
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Fig. 9 Relationship between train and test performance of the best-of-run GE models evolved
with different FPR cut-offs (30 runs per cut-off)

selection of the top performing model on train as a candidate for future deployment
is a reasonable approach, as the top performing models generally align along the
train/test coordinate diagonal. This is further confirmed by examination of the
models’ ranks. For FPR cut-offs of 0.2 and 0.3 the top model on the train set was
also the top model on the test set, for 0.4 cut-off the top model on the train set was
second on the test set. In the case of the most liberal FPR cut-off (0.5) the top model
on the train set ranked seventh on the test set, while the second top model of the
train set generalised top on the test. In fact, all 30 models developed with the 0.5
cut-off performed very close to each other on both train and test sets.

We decided to conduct an additional sub-investigation to further explore avenues
to finding a reliable “best generalisable model”. While using the pool of models
developed on the train data subset, we divided the original test data subset into
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Table 7 Comparison of the different methods of the “best generalisable model” selection

Cut-off Selection Test_fin Test_fin Test Test Test_fin Test TPR
threshold method TPR FPR TPR FPR TPR rank rank

0.2 cut-off Best on train subset 0.589 0.190 0.587 0.192 2 1

Best on validation subset 0.589 0.190 0.587 0.192 2 1

Best on Bootstraped 0.589 0.190 0.587 0.192 2 1

validation subset

0.3 cut-off Best on train subset 0.699 0.299 0.716 0.315 1 1

Best on validation subset 0.699 0.299 0.716 0.315 1 1

Best on Bootstraped 0.699 0.299 0.716 0.315 1 1

validation subset

0.4 cut-off Best on train subset 0.740 0.356 0.752 0.415 2 2

Best on validation subset 0.740 0.397 0.762 0.396 3 1

Best on Bootstraped 0.740 0.397 0.762 0.396 3 1

validation subset

0.5 cut-off Best on train subset 0.822 0.489 0.826 0.485 9 7

Best on validation subset 0.836 0.483 0.780 0.504 8 21

Best on Bootstraped 0.822 0.489 0.780 0.465 30 27

validation subset

equally sized validation and final test subsets, generating an overall split of the
data into three balanced subsets - original train, validation and final test subset
(70%, 15% and 15% of total data respectively). We also tested a bootstrapped (50
repetitions) validation subset. The results of the sub-study are presented in Table 7.
It should be noted that the 30 models developed with 0.5 FPR cut-off threshold are
less spread out than the models developed with the other three thresholds and display
a very similar performance. The results indicate that there is no particular advantage
in employing validation data subset or bootstrapped validation subset for the model
selection. We observed a similar trend for positive linear relationship between TPR
on train and TPR on test in the earlier part of the study (see Fig. 5). In the light of
these findings, the model selection based on performance on the train subset is an
acceptable approach and was adapted for the final analysis.

Table 8 presents AUCs of the tuned ML models on training and test data.
However, for business application, we want to be able to select class threshold
settings at model-development stage that will take into account business-informed
FPR cut-offs while maximising possible TPR levels. One approach can be to select
class thresholds to satisfy FPR cut-offs based on the training data and then apply
them for classification of the test data. The class thresholds established by this
method in the current study can be seen in the last columns of Table 8.

Table 9 contains TPR and FPR values resulting from evaluation on the test dataset
of the GE models evolved with different FPR cut-offs, selected based on the best
train performance and the ML models with class thresholds corresponding to the
four training FPR cut-offs. The same data is visualised in Fig. 10.
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Table 8 Performance of ML models and class thresholds corresponding to FPR cut-offs

Model Train AUC Test AUC 0.2 cut-off 0.3 cut-off 0.4 cut-off 0.5 cut-off

CART 0.846 0.750 0.28 0.19 0.17 0.15

RF 0.966 0.742 0.22 0.13 0.08 0.05

SVM 0.859 0.710 0.263 0.263 0.262 0.245

Table 9 Performance of the best GE models developed with different FPR cut-offs and ML
models with the corresponding class thresholds on test

Model Metric 0.2 cut-off 0.3 cut-off 0.4 cut-off 0.5 cut-off

GE TPR 0.59 0.72* 0.75* 0.83*
FPR 0.19 0.32 0.42 0.48

CART TPR 0.66* 0.71 0.73 0.79

FPR 0.24 0.30 0.36 0.44

RF TPR 0.76 0.80 0.85 0.89

FPR 0.32 0.43 0.54 0.64

SVM TPR 0.66 0.71 0.72 0.82

FPR 0.33 0.38 0.39 0.55

*Highest TPR levels achieved within 0.05 of FPR cut-off

Fig. 10 Comparison of test
performance of GE models
developed with different FPR
cut-offs and ML models
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The results show that in all four experiments GE-evolved models maintain their
positioning around FPR cut-off values on test data more consistently than ML
models with class thresholds based on these cut-offs (in bold—actual FPR levels
within ±0.05 of the desired FPR levels). Though in 6 cases ML models achieved
higher levels of TPR they fail to maintain required FPR levels. Apart from the
experiment with the strictest FPR cut-off (0.2), GE models achieve the highest TPR
between models with “on test” FPR levels within ±0.05 of the desired FPR levels
(in bold *).
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4.3 Conclusions

Compared with the fitness functions that were used in the first study, the new fitness
function allows to directly pre-set FPR levels during model development. The results
show that the new function was able to successfully drive GE and evolve classi-
fication models that maximise correct identification of the class of interest while
maintaining different levels of the other class misclassification. The observation
that performance of a model on the training data can serve as an indicator of the
model’s performance on the test data greatly facilitates model selection stage. The
models selected based on this approach showed generalisation to the previously
unseen data that was superior to the generalisation of the benchmark ML models
in maintaining pre-set FPR levels. This aspect of the GE-evolved models will be
particularly important for real-world business application scenarios.

5 Conclusions and Future Developments

This study demonstrates the application of GE to Business Analytics to address
the problem of improving patient recruitment in multicenter clinical trials. It does
it by developing predictive classification models of future performance of clinical
sites. In this area we built upon our previous work [7, 8] and used GE to evolve
decision-tree type classifiers based on the historical records of the sites’ recruitment
performance. GE was previously used in classification problems [9, 10, 35] and has
a range of advantages. GE grammar allows for incorporation of domain knowledge
during the design of the grammar [25], and provides an option for an easy tuning
of the model development process through the custom selected/constructed fitness
functions and yields potentially human-interpretable models [9, 10, 25]. In addition,
GE not only evolves classification models but simultaneously performs a form of
feature selection by zooming onto a subset of predictor variables [9, 10, 25].

We have previously used GE to develop classification models for patient
recruitment prediction that were at least as effective as the ML benchmarks. In the
original work, we followed the default classification conventions and used standard
accuracy as fitness function to drive GE and shape model selection. However,
standard accuracy does not take into account the contribution of different classes
to the score and is often biased towards the majority class, thus it is a sub-optimal
measure for situations in which misclassification costs differ for two classes [30].

In the first part of this study, classifiers were evolved using a range of GE fitness
functions that in various forms, combine the contribution of the two classes in
one resultant score, balanced accuracy, Yoden’s J-statistic and F-score with three
different values of beta [17, 27, 32]. Results of these classifiers were compared
with the results of the classifier evolved using standard accuracy and benchmarked
against 3 ML algorithms widely used in classification. The results demonstrate
that the use of these fitness functions produces classifiers with different TPR/FPR
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qualities. Taken together, the classifiers developed in this work cover different
areas of the TPR/FPR space. To address the challenge of developing classifiers
for imprecise environments, Fawcett and Provost [28] proposed an idea of the
rodust hybrid classifier comprised of a group of classifiers that can maximise the
coverage of different segments of the TPR/FPR space. It can be speculated that the
classifiers developed in this work form a front akin to this robust hybrid classifier.
The utilisation of a range of fitness functions representing different degrees of
contribution of two classes to the final score can be used to address challenges of
uneven misclassification costs in unbalanced data situation and guide evolution of
customised patient recruitment classification models by GE. However, this approach
has some limitations, as even though the developed models cover different areas
along the FPR axis, it would be difficult to specifically direct model development to
particular misclassification levels.

In the second part of this study we set out to use GE to evolve a system
of classifiers that maximise correct classification of the class of interest while
maintaining pre-set levels of the other class misclassification. To achieve this we
proposed a new fitness function that incorporates cut-off values for the acceptable
level of FPR. Based on the business context of clinical site selection we identified
a range of potentially acceptable misclassification levels and used GE to evolve a
system of models to accommodate these costs. We demonstrate that the resultant
models show generalisation levels comparable with or even better than the well-
established ML models, while maintaining the required levels of misclassification.
However, care should be taken when projecting these generalisation results to
future model deployment. Though the current study assessed models’ generalisation
on the previously unseen data, both data subsets (train and test) were produced
by splitting one historical dataset. The generalisability of the models in future
deployment might be negatively affected if new data differs substantially from
this dataset. Our sub-study on approaches to the selection of models with good
generalisability has shown that, at least in this particular case, the simple selection
of models based on their training performance provides satisfactory results. In
the future, an additional verification of this finding on different datasets will be
needed. Notwithstanding these limitations, the demonstrated ability of the GE-
evolved models to uphold misclassification error levels on the majority class while
maximising correct classification of the class of interest is a very valuable feature
from the perspective of clinical site selection.

We adopted an approach of solving this problem as single objective optimisation
of a number of separate points, opting to maximise TPR for each FPR cut-off
point separately. The same problem can be re-cast as a multi-objective optimisation
problem of simultaneously optimising TPR and minimising FPR (or maximising
specificity). Several recent studies successfully used Evolutionary Multiobjective
Optimisation (EMO) to solve similar problems and simultaneously evolve a Pareto
front of acceptable solutions [4, 6, 12, 14, 21]. We plan to investigate the utility of
an EMO approach to development of classification models for patient recruitment
business problem in future work. However, the GE model system developed here
has the advantage of giving the business user explicit control over the selection of
business-acceptable FPR thresholds at the model development stage.
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The classification models developed in this study can be used at the site selection
stage to screen out clinical sites that have propensity to underperform and jeopardise
the trial. Incorporating this Business Analytics tool (screening) at the site selection
stage can facilitate patient recruitment by improving quality of the study sites pool.
It can substantially reduce costs associated with the need to initiate and maintain
low-performing sites and to bring in emergency “rescue” sites later in the study.
Furthermore, in-depth investigation of variables used by GE-evolved classification
models might give some additional information about the factors influencing clinical
site’s success in patient recruitment.

Overall, the results of this study clearly demonstrate that GE has a range of
advantages making it suitable for the use in this business domain. GE was shown
to evolve highly tailored classification models adapted to the needs of prediction of
patient recruitment in multicenter clinical trials. On a more general level, this study
showcases successful application of GE in Business Analytics.
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intrinsic polymorphism, 127
ripple, 129–131
single and multiple, 126

language, 111
many-to-one mapping, 113, 117, 118
output to fitness value, 119
PCFG, 111, 112, 114
πGE (see πGE mapping process)
representation spaces, 119–120
“ripple,” 109, 120
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Mapping process, GE (cont.)
schema, 131–133
semantic compositionality, 168–173
TAGE

connectivity, 104
developmental approach, 104
genotype-phenotype mapping, 97–101
GRN, 104
operators, 101–102
program synthesis, 104
TAGs (see Tree Adjunct Grammars

(TAGs))
tree stubs, 102–103

word probability, definition, 112
Mario AI Benchmark, BTs, 434, 435

conditions, actions and sub-trees, 436,
456–458

filters, 456
information, 436
PlanningMario (Astar), 437
ReactiveMario (NoAstar), 437–438
Super Mario Bros, 435

Market-value-added (MVA) rank, 283
Maslov limit order model, 276
MaxMSP, 355
Mean best execution time (MBT), 299
Mean best generation (MBG), 299, 305
Mean Squared Error (MSE), 231
Moving average convergence divergence

(MACD) oscillator, 265
Moving averages (MAs), 375
Moving Target Defense (MTD) projects, 410
Multi-Layer Perceptrons (MLP), 280
Multi-threaded parallel GE

basic GE algorithm, 221, 222
cache-based memory architecture, 224
first touch policy, 223
genome arrays, allocation of, 223
multi-core CPU processor, 221–222, 231
OpenMP evolutionary tasks

execution timeline, 232–233
median execution time and speedup,

231, 232
open directive-based specification, 222

optimizations, 223
pragma directive, 222, 223
processor architecture, 221
pseudo random number generation, 223

Multivariate Discriminant Analysis (MDA),
280

Musical Instrument Digital Interface (MIDI),
347

Musical Metacreation (MuMe), 362
Mutate and Store (MS), 87

N
NASA Software, 335
Nash equilibrium, 411
Natural Language Processing (NLP), 344
Neural networks (NN), 398
NeuroEvolution, SGE and DSGE

experimental setup, 155–156
flame, WDBC, ionosphere and sonar

datasets
description, 156
fitness evolution of best individuals, 157
RMSE, accuracy, AUROC and

f-measure, 157, 158
statistical analysis, 158–159

grammar, 155
Non-Player Characters (NPCs), 433, 441
Non-recursive scaffolding method, 291
Non-Uniform Memory Access (NUMA), 223
Non-uniform redundancy, GE representations

bias, 57–59
explosive, balanced, and collapsing

grammars
average branching factor, 56, 57, 60–61,

75
binary grammars, 63–67
BNF, grammar production rules in,

59–60
expected tree size, 61
experimental setup, 62
genotype and phenotype space, 59
mixed arity grammars, 71–75
postfix grammar, 57
properties, 75, 76
trinary grammars, 69–71
unary grammars, 67–68

GA performance, 58
genetic code degeneracy, effect of, 58
indirect representations, 56
sensible initialisation, 58

NSGA2, 334, 335

O
Object Oriented Genetic Programming

(OOGP), 291

P
Pagie polynomial regression, 149, 153, 154
Pancreas Model Tools (PMT) application,

382–385
Parallel program synthesis, multi-cores, see

Grammatical Automatic Parallel
Programming (GAPP)
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Pareto Optimality, 411
PCFG, see Probabilistic context-free grammar

(PCFG)
Peer-to-peer networks, 414
Performance analysis, parallel GE

computational environment, 230
data layout, 230
in-depth kernel analysis, 238–242
many-threaded parallel GE, PP, DP and

PDP OpenCL kernels, 233–235
maximum local size, 230
multi-and many-threaded parallel GE,

235–236
execution timeline, 235–238
median speedup, 236, 237

multi-threaded parallel GE, OpenMP
evolutionary tasks

execution timeline, 232–233
median execution time and speedup,

231, 232
parameters and methodology, 231
symbolic regression problem, 230–231

Persistent random constants (PRCs), 246
Petri net, 400, 401
πGE mapping process, 57

connectivity of representation
GE vs. πGE genotypes, 84–85
Mutate and Store, 87
search landscapes, 85–86

expansion orders, 92
vs. GE, phenotypic landscape visualisations

binary grammar, 88–89
subitem constraints, 88
graph features, 89
limitations, 88, 90
neutral mutation, 88, 91, 92
redundancy, 91–92

position independent mapping
derivation tree example, 82–83
example grammar and chromosome,

81–82
order choice list, 82, 83
vs. traditional GE mapping, 81

PlanningMario (Astar)
mapping a level, 438–439
path planning

edges for, 439–441
nodes for, 439

PoeTRYMe, 344
Polaris, 290
PonyGE, 347
Prefix-notation grammar, 30–31
Price’s theorem, 131

Probabilistic context-free grammar (PCFG),
111, 112, 114

Probabilistic Fitting., 383
Probabilistic Tree Creation 2 (PTC2), 32, 46
Probit/logit analysis, 280
Program-and data-level parallelism (PDP)

strategy, 227–228
Program-level parallelism (PP) strategy,

225–226
Programming languages, 191–192
Prolog, 208–210
PureData, 355
Push-down automata, 191
PushGP, 291
Put-Call Parity, 266
Python, 291, 347

Q
Quicksort, 297

R
Random Forest (RF), 468
Random initialisation (RND), 11–12, 32, 46
R CARET package, 465, 468, 476
ReactiveMario (NoAstar), 437–438
Receiver Operating Characteristic (ROC)

curve, 464
Recursive programs, GAPP, 26–27, 299–302

design of grammars, 294
enhancements in, 303–308
OpenMP pragmas, 293–294
performance optimization, 294–296

Red Queen Effect, 412
Regular grammars, 193
Representation, 56
Reverse, 297
Ripple effect, 29, 109
RIVALS, 408, 409

coevolutionary algorithms, 416–417
logical network, 415–416
logical to physical network, 416
mobile asset placement, 418–419
network routing problem, 419–420

Root squared mean error (RSME), 46, 47, 157,
158, 380

Rule-induction applications, 463

S
Schema, 131–133
Semantic distance (SD), 165–166
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Semantics
attribute grammars, 215–216

vs. Chomsky type-0 grammars, 206–208
examples of, 199–206
vs. GE performance, 214
global information, 198
propagation mechanisms, 199
semantic actions, 198
semantic information, 198
symbolic expression problem, 214

Christiansen grammars, 215–216
adaptability, 208
vs. GE performance, 214–215
partial formalization, 211–213
Prolog, 208–210

context-free grammars, 197
in formal languages (see Formal language

theory, semantics)
programming language, 196–197

Sensible initialisation, 12, 58, 250
SGE, see Structured Grammatical Evolution

(SGE)
Shape grammars, 323–325
Shape Match problem

grammars for, 44, 45
mean best train results, 46, 47

Shapiro-Wilk test, 375, 376
Sierpinski triangulation, 335
Simulating Tax Evasion And Law Through

Heuristics (STEALTH), 282, 413
Single non-terminal grammar, 29–30
SLFFEA, 332
Sorting, GAPP, 290, 302–303

design of grammars, 296
enhancements in, 308–311
performance optimization, 296–297

SR Grammar, 373–374
Stacks, 191
Sterling Software, 335
Stirling ratio, 272
Structural Engineering Optimisation In

Grammatical Evolution (SEOIGE),
332, 333

Structured Grammatical Evolution (SGE), 81
characteristics, 138
DSGE (see Dynamic Structured

Grammatical Evolution (DSGE))
genotype, 141–142
mapping procedure, 142
structured representation of, 138

SUIF, 290
Sum-of-N problem, 297

Sum of squared errors (SSE), 249
Supercollider, 355
Supply chain management, 281–282
Support Vector Machine (SVM), 246, 468
Symbolic-based methods, 220
Symbolic regression (SR), 246, 247, 251, 259,

369, 370

T
TAGE, see Tree Adjunct Grammatical

Evolution (TAGE)
Test-based coevolutionary algorithms, 410
Trade execution, 273–276
Transformations analysis, grammar design

experimental setup, 32
initialisation biases, 32–34
performance biases, 37–39
random walk biases, 34–35
termination biases, 35–37

Transitive dominance, 412
Tree Adjunct Grammars (TAGs)

adjunction and substitution operations,
96–97

CFGs, 93–94, 96
derivation tree, 97, 98
genotype-phenotype mapping algorithm,

94, 96
initial and auxiliary trees, set of, 94, 95, 97
lexicalised TAG, 93

Tree Adjunct Grammatical Evolution (TAGE)
connectivity, 104
developmental approach, 104
genotype-phenotype mapping, 96–101
GRN, 104
operators, 101–102
program synthesis, 104
TAGs

adjunction and substitution operations,
96–97

CFGs, 93–94, 96
derivation tree, 97, 98
genotype-phenotype mapping

algorithm, 94, 96
initial and auxiliary trees, set of, 94, 95,

97
lexicalised TAG, 93

tree stubs, 102–103
Tree stubs (TS), 102–103
True positive rate (TPR), 466
Turing-Church’s thesis, 190
Turing machine, 190, 191, 193
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Type 1 diabetes (T1DM), 368, 370, 386
Type 2 diabetes (T2DM), 368

U
UBall5D function, see Vladislavleva-4 (V4)

problem
Univariate marginal distribution algorithm

(UMDA), 374–377
Unlinked productions grammar, 28, 29
Unrestricted grammars, 193

V
Vienna Fortran Compiler, 290

Vladislavleva-4 (V4) problem
grammars for, 41–44
mean best train results, 46, 47

Volume Weighted Average Price (VWAP), 274

W
Weighted moving average (WMA), 374, 376
Wii remote, 344
Wilcoxon Signed Rank Sum test, 310, 311

Y
Yoden’s J-statistic, 464, 482
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